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1 September 9, 2022

SoS has connections with multiple areas including: optimization, robotics, optimal control, combi-
natorics, algebraic geometry, statistics, ML, etc.

1.1 Optimization on {0, 1}n

Given a map f : {0, 1}n → R, find minx∈{0,1}n f(x). We will assume that we have a succinct

representation of f by a polynomial; in particular, f(x) =
∑

S⊂[n] f̂(S) ·
∏
i∈S xi =

∑
S⊂[n] f̂(S) ·xS .

Here we assume that the number of S with f̂(S) 6= 0 is bounded, so that f may be computed
efficiently.

It is useful to look at proofs here. What is a proof that min f(x) ≤ α: simply some x so that
f(x) ≤ α.

What is a proof that min f(x) ≥ α? A trivial (long) witness is simply the truth table of f .
What is a short witness?

Definition 1.1. We say that “f(x) ≥ 0∀x ∈ {0, 1}n” has a degree d SoS proof, namely d f(x) ≥ 0
if there exist p1, . . . , pM ∈ R[x]≤d/2 so that

f(x) =

m∑
i=1

pi(x)2, ∀x ∈ {0, 1}n. (1)

Here’s a trivial proof:

x+ y − 2xy = x2 + y2 − 2xy = (x− y)2,

so the above is a proof in degree 2 that 2 x+ y − 2xy ≥ 0.
Here are some basic questions:

1. Do SoS proofs exist for all f ≥ 0?

2. How large are they?

3. Can we verify them efficiently?

4. Can we find such proofs efficently?

Facts:

1. WLOG we can take m ≤ nd (we will prove this today). Furthermore, if d f(x) ≥ 0, then

d f + ε ≥ 0, where the coefficients of the polynomials can be represented in poly(nd, log 1/ε)
bits. In particular, the number of pi’s and the number of bits in their representation can both
be bounded appropriately, so we are good. We won’t worry about the imprecision ε. This
therefore answers the question of how large the proofs are.

2. Given p1, . . . , pm, we can check in poly(nd) time if f(x) =
∑

i pi(x)2 for all x ∈ {0, 1}n. This
answers the question of whether we can verify the proofs.

3. If d f ≥ 0, we can find p1, . . . , pm certifying d f + ε ≥ 0 in poly(nd, log 1/ε) time. This
answers the final question of whether we can find such proofs efficiently.
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4. If f(x) ≥ 0 for all x ∈ {0, 1}n, then 2n f(x) ≥ 0, i.e., there’s a proof in degree 2n. This isn’t
that surprising, since there’s a trivial exponential sized witness of f ≥ 0; since the degree is
linear in n, the size of the proof is exponential in n.

5. What can we get with only a small amount of computation? For all f , there exists α ∈ R so
that

deg(f)
f + α ≥ 0, where deg(f) denotes the smallest even integer larger than the degree

of f . Note that here −α may not be the minimum degree of f . This is on the opposite side of
the spectrum of the previous one (very loose bound, but minimum possible degree). Much of
the course is focused on getting something in-between: getting much better approximations
of min f , but with reasonably small degree.

How much of the above depends on the hypercube? We use the fact that the hypercube is
a variaty, namely {x ∈ Rn : x2

i = xi∀i}, and is in fact a very nice variety (e.g., has Grobner
basis). If the set is all of Rn, all of the facts work, more or less, with some modifications. For
TCS purposes, there are some other natural domains where everything carries over nicely: e.g.,
{x ∈ Rn : ‖x‖2 ≤ 1}, or {x ∈ Rn : xi ∈ {−1, 0, 1},

∑
i x

2
i = k}.

1.2 Multilinearization

Fact 1.1. Every f : {0, 1}n → R has a unique representation as f(x) =
∑

S⊂[n] f̂(S) · xS.

This is multilinear in the sense that xS has no repeated xi in the product. This fact enables
Boolean Fourier analysis.

Proof. We can write f(x) =
∑

y f(y)·1{x = y}. The indicator function 1{x = y} is trivialy a degree

n polynomial, and then we multilinearize (in particular, reduce modulo the ideal (x2
i = xi)i∈[n]).

As a consequence of the above fact: to check whether 2 polynomials are equal over the hyper-
cube, it suffices to check whether their unique multilinear representations are equal, and so if they
are degree d, this takes O(nd) time.

We prove the 4th fact above:

Fact 1.2. If f ≥ 0, then 2n f ≥ 0.

Proof. Let g(x) =
√
f(x), which is well-defined since f ≥ 0. By the previous fact g has a rep-

resentation as am ultilinear polynomial. Now f(x) = g(x)2, and deg(g) ≤ n. So, this certifies

2n f ≥ 0.

In general, taking square roots is not a great idea since the square root of a function has high
degree.

Now we show that the proofs have a certain nice representation:

Lemma 1.3 (Matrix representation lemma). 2d f ≥ 0 iff exists a matrix M ∈ R( n≤d)×( n≤d) so that
for all s ⊂ [n], |S| ≤ 2d so that

f̂(S) =
∑

A,B:A∪B=S

MAB,

and M � 0.
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Proof. First we show that existence of the matrix implies a 2d-degree proof. Since M is PSD, we
can write M = BB> for some square matrix B of the same dimensions as M . Let us denote the
columns of B as B1, . . . , BN . Now define

pi(x) := 〈Bi, Xd(x)〉 =
∑
|A|≤d

Bi(A) · xA,

where the vector Xd(x) = (1, x1, . . . , xn, x1x2, . . .) is the vector of monomials of degree at most d.
The assumption in the lemma implies that

f(x) =
∑
A,B

xAxBMAB =
∑
A,B

Xd(x)AXd(x)B ·MAB =
∑
〈Bi, Xd(x)〉2 =

∑
i

pi(x)2.

The other direction in the proof of this lemma reverses the above direction: a SoS proof gives the
polynomials pi, then we can define a (non-square) matrix B, and set M = BB>, which gives us
the desired representation of f̂(S).

Next we prove Fact 1 from above: If there is a degree d SoS proof, we can construct the matrix
M as in the above lemma, and then applying the reverse direction of the lemma we get that there
is a SoS proof with a number of polynomials at most the rank of M , which is at most

(
n
nd

)
.

To prove the remaining 2 facts, we need the following convexity fact:

Lemma 1.4. The set {f : d f ≥ 0} is convex.

Proof. Suppose that polynomials p1, . . . , pm certify f ≥ 0 and polynomials q1, . . . , qm certify g ≥ 0.
For any α, β ≥ 0, we need to certify that d αf + βg ≥ 0. We now check that:

αf + βg =
∑
i

(
√
α · pi(x))2 +

∑
j

(
√
β · qj(x))2.

We now prove Fact 5:

Lemma 1.5. For all f there is α so that
2 deg(f)

f + α ≥ 0.

(It is actually possible to get deg(f), but we do 2 deg(f) since it’s easier.)

Proof. By convexity, it is enough to check the fact for monomials xS ,−xS . This is because any
polynomial f can be written as a nonnegative linear combination of monomialas xS ,−xS ; then we
take the corresponding nonnegative linear combination of the corresponding SoS proofs.

For xS , we have that xS = (xS)2; this is immediate since xS takes values in {0, 1} for all
x ∈ {0, 1}n.

What about for −xS? Let’s look at 1− xS (here we choose α = 1). We can write:

−xS + 1 = (xS)2 − 2xS + 1 = (xS − 1)2,

and so
2|S| −x

S + 1 ≥ 0.

By inspecting the proof it is evident that we can take α =
∑

S |f̂(S)|.
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The above lemma shows that we can certify minx f(X) ≥ −
∑

S |f̂(S)|. This bound is not an
interesting bound at all on the minimum value of f . In the remainder of today’s lecture we will
certify a nontrivial bound on an interesting function.

First, we cerify the proof of fact 3:

Lemma 1.6. If f has a degree d SoS proof, we can find p1, . . . , pm for d f+ε ≥ 0 in poly(nd, log 1/ε)
time.

Proof. The idea is to search for M ∈ R( n≤d)×( n≤d) so that f̂(S) =
∑

A∪B=SMAB, M � 0. There are
various technical questions about the precision we can get for finding solutions of convex programs,
which we gloos over – but by using semidefinite programming (e.g., ellipsoid algorithm), we can
find the proof in poly(nd, log 1/ε) time.

1.3 Max-Cut

Definition 1.2 (Max-Cut). Given a graph G = (V,E), the goal is to find maxS⊂V δ(S), where
δ(S) denotes the number of edges crossing from S into V − S.

Max-Cut is NP-hard (Karp). Best we can hope for is approximations. The approximation
algorithm we hope for is that which takes a graph G and outputs a number ALG(G) so that

1

β
·ALG(G) ≤MaxCut ≤ ALG(G),

for some β > 1. A trivial approximation algorithm for MaxCut is simply the number of edges in
G, namely |E(G)|; it attains a 2-approximation. The way to cut half of the edges is simply to take
a random cut.

It was thought for a while that this was perhaps the best you could do; it took 20 years to
get a better algorithm, until Goemans-Williamson showed that you could get a β ≈ 1/0.878 ≈
1.139 approximation algorithm. Qualitatively, it has to do something much better than the trivial
algorithm.

Definition 1.3. We define the cut polynomial of G as:

G(x) =
∑
i∼j

(xi − xj)2.

Clearly, for x ∈ {0, 1}n, G(x) measures the number of cut edges; in particular, the problem
minx−G(x) captures the MaxCut problem.

Here’s a proposal to solve the MaxCut problem: fix some d ∈ N. Find the least αd so that

d αd − G(x) ≥ 0. (We can check if there is a SoS proof by using semidefinite programming, by
Fact 3 above.) The main question is whether this algorithm is any good?

Theorem 1.7. We have α2 ≤ 1.139 . . . ·MaxCut(G).

This gives a very nontrivial bound using a low-degree proof. Quite surprising!
Let’s start with a sanity check: namely, that α4 ≤ |E(G)|. We need to write |E(G)|−

∑
i∼j(xi−

xj)
2 as a sum of squares. It is enough to write 1− (xi − xj)2 as a sum of squares, or equivalently

1− (x− y)2. We use the same trick as we did for −xS above:

(1− (x− y)2)2 = 1 + (x− y)4 − 2(x− y)2 = 1 + (x− y)2 − 2(x− y)2 = 1− (x− y)2.

Before proceeding, we discuss some obstructions to SoS proofs:
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1. There is some x with f(x) < 0; if this were the case, we would have that we can certify every
nonnegative function. (Unlikely in low-degree since max-cut is NP-hard.)

2. “Pseudoexpectation”.

Definition 1.4. A degree-d pseudoexpectation is a linear operator: Ẽ : R[x]≤d → R, so that:

1. Ẽ1 = 1.

2. For every p ∈ R[x]≤d/2, Ẽp(x)2 ≥ 0.

3. For every multiset S ⊂ [n], Ẽ(xS · (xi)2) = Ẽ(xS · xi).

The idea here is that for a distribution µ on {0, 1}n, Eµ : R[x]→ R is a degree-d pseudoexpectation
for all d. One high-level idea that we will think of pseudoexpectations as actuall expectations with
respect to actaul distributions (even though they’re not).

One basic fact is: a degree 2n pseudoexpectation is an actual expectation: namely, there exists
a distribution µ so that Ẽp = Eµp for all p. (This is closely related to the fact that we can certify
nonnegativity of any nonnegative polynomial using a degree 2n SoS proof.)

Lemma 1.8. Suppose have some polynomial f and a degree-d PE Ẽ so that Ẽf < 0. Then it is
not the case that d f ≥ q0.

Proof. If not, then we have
∑

i pi(x)2 = f(x). By property 3 of pseudoexpectation (in particular,

that we can multilinearize up to degree d), Ẽ
∑

i pi(x)2 = Ẽf(x). But the LHS is non-negative
(property 2 of PE) and the RHS is negative (assumption), a contradiction.

Lemma 1.9 (Duality). For all f and d, exactly one of the two holds:

• There is a degree-d Ẽ so that Ẽf < 0.

• d f ≥ 0.

The exactly duality holds only on the hypercube; in general, we can relax these things to hold
up to ±ε.

We prove the following slight weakening:

Lemma 1.10. For all f,d, exactly 1 of:

1. There is a degree d PE so that Ẽf < 0.

2. For all ε > 0, d f + ε ≥ 0.

Proof. We saw above that at most 1 of the above occur. Now we show that at least 1 of them
occur. Note that Kd := {g : d g ≥ 0} is a convex cone. (This cone is closed, which can be proven
by arguing carefully, but we will argue about the closure of this cone to avoid having to deal with
those details.)

First suppose that f ∈ cl(Kd). We have that f1, f2, . . . ,→ f so that each fj has a SoS proof.

For any ε > 0, we can choose t so taht d ε− (ft − f) ≥ 0. Why can we do this? From fact 5 from
earlier today, we can always certify some upper bound that goes to 0 as the size of the coefficients
goes to 0. We can do that since ft → f here.
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We can write f + ε = ft+(ε− (ft−f)), and we know that ft and ε− (ft−f) both have degree-d
certificateso f nonnegativity, meaning that f + ε does.

What if f 6∈ cl(Kd). By the hyperplane separation theorem, we can separate f from cl(Kd)
with a hyperplane. In particular, there is a linear map L : R[x]≤d → R so that Lg ≥ 0 for g ∈ Kd

and Lf < 0. We claim that we can rescale f to be a pseudoexpectation. (There is a technical issue
here, namely that we need L to act on multilinear polynomials, namely the quotient ring). The
idea is that L(pi(x))2 ≥ 0, which holds by definition of Kd.

We also want L1 > 0. Choose α so that d f + α ≥ 0. We write

L1 = L (1/α · (α+ f − f)) = L(1/α(α+ f))− Lf > 0,

as desired. We have used that Lf < 0 and L(α + f) ≥ 0 here (since we have already verified
that L applied to a sum of squares is non-negative). This means that we can normalize L (by a
non-negative real number) as desired.

Note that Ẽ is specified by nd numbers. Similar to the matrix representation theorem we saw
for SoS proofs, there is an analogous matrix representation theorem for pesueodexpectations.

We have one more duality theorem:

Theorem 1.11 (Algorithmic duality). There is a poly(nd, log 1/ε)-time alg which takes f and
returns either:

1. A proof that d f + ε ≥ 0;

2. Some Ẽ so that Ẽf < ε.

This uses similar ideas from the algorithmic result that finds a degree-d SoS proof, if it exists.

Back to Max-Cut. We know that if it is not the case that d α−G(x) ≥ 0, then there is a PE

Ẽ of degree d so that ẼG(x) ≥ α (in particular, the above result shows that Ẽα − G(x) < ε, and
then by moving G to the other side and ignoring the ε, we get what we want).

We hope that there is some y ∈ {0, 1}n so that G(y) is not too much less than α. The general
paradigm is as follows: we want to design an algorithm that takes EµxS for all |S| ≤ d, and then
produces some y ∈ {0, 1}n. We want to analyze this algoirthm using only SoS-provable facts. This
will mean that the algorithm works given ẼxS (since our analysis only depends on SoS-provability).

Imagine we’re given the values EµxS so that EµG(x) ≥ α; we want to find some y so that G(y)
is not much smaller than α. It is good enough to sample µ′ on {0, 1}n so that, for all i, j:

Eµ′xi = Eµxi, Eµ′xixj = Eµxixj . (2)

Sicne G has degree 2, that the 2 moments of µ′ match those of µ means that the expectation under
µ′ of G is equal to the expectation under µ ot G. We can’t do this exactly (otherwise we could
solve MaxCut exactly). But we formulatethe following relaxed goal: construct a distribution µ′ on
Rn so that the moment matching conditions (2) holds. This implies that Eµ′G(x) ≥ α.

We will in fact define a Gaussian distribution: its mean vector v ∈ Rn is defined by vi = Eµxi,
and its covariance is defined by Σij = Eµxixj − (Eµxi)(Eµxj). Note that we can access the mean
and covariance of µ by looking at degree-2 polynomials. We now set µ′ = N (v,Σ). For this to we
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well-defined, we need Σ to be PSD (which it is since Σ is the covariance of µ, which is a probability
distribution).

What if we’re given a pseudoexpectation Ẽ? We need to check that Σ � 0. In particular, we
need to check that for all u, u>Σu ≥ 0:

u>Σu =
∑
i,j

uiuj(Ẽ(xixj)− Ẽ(xi)Ẽ(xj)) = Ẽ
∑
i,j

uiuj(xixj − ẼxiẼxj) = Ẽ
(
〈u, x〉 − Ẽ〈u, x〉

)2
≥ 0,

(3)

where the last step uses the fact that a pseudoexpectation applied to a square is non-negative.
(Here, we crucially use that covariance is PSD since expectation of squares is non-negative.)

Consider the following ALG:

1. Sample g ∼ N (v,Σ) ∈ Rn.

2. We need to round g to the hypercube: so set

zi =

{
1 : gi ≥ 1/2

0 : gi ≤ 1/2.
(4)

We finally sketch the analysis that the resulting z has cut value at least α times the GW constant
factor.

Goal is to show that E[G(z)] ≥ c · α, for some constant c. We will do this term by term.
Remember that EG(z) =

∑
i,j E(zi − zj)

2. We will show that each term (which is simply the
probabilitythat i, j is cut by z) is at least what it should have been, times c. In particular:

E(zi − zj)2 ≥ c · Eµ(xi − xj)2 = c · Eg∼N(v,Σ)(gi − gj)2.

Here we’ve gotten rid of the graph, which essentially gets rid of the main problem. So the resti s
just some analytical calculations. WLOG, we take vi = Eµxi = 1/2 (since we can always flip 0 and
1, which doesn’t change the cut polynomial). Furthermore, Eµx2

i = Eµxi = 1/2 since we’re on the
hypercube.

So, the question can be rephrased as follows: for a Gaussian:

N(

(
1/2
1/2

)
,

(
1/4 ρ
ρ 1/4

)
), (5)

what is the minimum ratio (over ρ):

Prg(gi > 1/2, gj < 1/2 or vice versa)

E(gi − gj)2
.

This ratio sits above 1/2 – it is roughly 0.878.
The above argument shows that if there is a PE Ẽ of degree 2 so that ẼG(x) ≥ α, then there is

y ∈ {0, 1}n so thatG(y) ≥ 0.8α. Thus there is a degree 2 SoS proof that 2
1

0.8 ·MaxCut(G)−G(x) ≥
0. (If not, then a pseudoexpectation that this is not the case would exist, meaning that there is
some y ∈ {0, 1}n so that G(y) exceeds the value of the maximum cut of G, which is a contradiction.)
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2 September 16, 2022

Some history of SoS:

• 1960s: Krivine & Stengle prove that each nonnegative polynomial over a simealgebraic set
can be certified nonnegative by an SoS proof.

• 1987: Shor proposes precursor to SoS algorithm (relate polys to semidefinite programs).

• 1990s/2000s: LP/SDP/eigenvalue methods in TCS/optimization.

• 2000s: Lasserre proposes pseudoexpectation SDP, independent work by Parrilo.

• 2010s: SoS as unifying view on LP, SDP, spectral algs; new applications.

2.1 Review

Recall that a SoS proof of nonnegativity of a function on the hypercube, denoted d f ≥ 0, us a
family of polynomials p1, . . . , pn, with deg pi ≤ d, so that f =

∑
i p

2
i over {0, 1}n.

The dual object to a SoS proof is a pseudoexpectation Ẽ : R[x]≤d → R, which is linear, repspects

Ẽ[xSx2
i ] = Ẽ[xS ] for multisets S, Ẽ[p2] ≥ 0, and Ẽ[1] = 1.

We can search for a pseudoexpectation with Ẽ[f ] < 0 in time nO(d). We can represent pseudoex-
pectations as semidefinite matrices. Think of Ẽ as representing low-degree moments of distributions.

Main duality fact: for ever f of degree at most d, either d f ≥ 0, or there is a degree-d PE so

that Ẽ[f ] < 0.
The idea of taking a pseudoexpectation and sampling a Gaussian whose mean and covariance

are the same as a PE (which we used for max-cut) is super useful. The same idea gives approxima-
tion algorithms for: maxx x

>Ax for A � 0, and also maxx,y x
>Ay (the cut norm/Grothendieck’s

ienquality). This idea also forms the basis for best-known approximations algos for graph expansion
(Arora-Rao-Vazirani).

2.2 Structured instances for max-cut: hyperfiniteness

We first talk about hyperfinite graphs.

Definition 2.1. A graph G is (C, ε) hyperfinite if we can remove ε · |E| edges so that all connected
components have size ≤ C.

Why is max-cut easy here? Suppose we knew the decomposition into small components. On
each constant-size connected component, do brute force search. Then you glue the cuts for each
component together arbitrarily. This structured cut cuts at least (1 − O(ε)) · OPT edges; this is
because we have ignored only ε fraction of the edges, and that ε fraction is at most a 2ε fraction of
OPT (since OPT ∈ [|E|/2, |E|]).

Main point: SoS doesn’t care if we don’t know the decomposition, but it will function as if we
did.

Theorem 2.1. Suppose G is a (C, ε)-hyperfinite graph. It holds that

max
deg O(c) Ẽ

Ẽ[G(x)] ≤ (1 +O(ε)) ·max
y
G(y).

10



By duality, there are SoS proofs which certify an upper bound of (1+O(ε)) times the maximum
value. By doing binary search, you can get an approximation of the max value; Sam doesn’t know
if there is a rounding algo to get the cut (probably there is).

Proof. Consider a PE Ẽ. Then by defn ẼG(x) = Ẽ
∑

i∼j(xi − xj)
2. Now let’s decompose this

according to hyperfiniteness:

ẼG(x) =
∑
C

ẼGC(x) +
∑

(i,j)∈S

Ẽ(xi − xj)2,

where GC(x) is the cut polynomial restricted to component C. Here |S| ≤ ε|E|.
We didn’t prove this last time, but a degree-2n PE on n variables corresponds to an actual

expectation over a distribution. Therefore, since (by assumption) GC is a degree-2C PE on the
component C, we have ẼGC(x) ≤ OPTC .

Furthermore, we can find an explicit SoS proof that Ẽ(xi − xj)2 ≤ 1. Thus, we see that

ẼG(x) ≤
∑
C

OPTC + ε|E| ≤
∑
C

OPTC + 2ε ·OPT.

Furthermore, OPT ≥
∑

C OPTC . So, we get ẼG(x) ≤ (1 + 2ε) ·OPT .

Remarks. If you believe unique games conjecture, then the worst-case approximation ratio
doesn’t improve for SoS algo for worst-case max cut even if you go up to degree-C. An important
direction is to understand whether SoS can do this sort of thing, without relying on unproven
conjectures. Furthermore, it is known that approximating max-cut up to 1 + ε is NP-hard.

2.3 Structured instances for max-cut: dense graphs

Below theorem is roughly due to Barak-Raghavendra-Steurer.

Theorem 2.2. If G is dense (i.e., it has Ω(n2) edges), then

max
deg Ẽ≤poly(1/ε)

ẼG(x) ≤ (1 +O(ε)) ·OPTG.

To prove the above theorem, need some more prelims.

Local distributions. Suppose that deg Ẽ ≥ d. Then for all S ⊂ [n], |S| ≤ d/2, there exists
µS : {0, 1}|S| → R+ so that for all T ⊆ S, EµSxT = ẼxT . If we look at two such subsets S, S′,

then the distributions µS , µS′ agree on the subset S ∩S′ since ẼxT is constant for T ⊂ S ∩S′. The
reason that this holds is the same as that which we said before: the degree of Ẽ is at least twice
the size of any such subset S.

Example: consider a triangle. We create a distribution on each edge: the distribution on {xi, xj}
takes (1, 0) with probability 1/2 and (0, 1) with probability 1/2. Why do these agree locally: the
marginal distribution on {xi} is Ber(1/2). So, no matter which 2-variable local distribution you
start with, the marginal on the vertex forming the intersection is Ber(1/2). But these are not
globally consistent:

E(x1 − x2)2 + (x2 − x3)2 + (x3 − x1)2.

11



Above is not defined, but we can define it by decomposing into each pair of 2 variables and using
the coresponding local distribution:

Eµ12(x1 − x2)2 + Eµ23(x2 − x3)2 + Eµ13(x1 − x3)2 = 3.

And there is no distribution which cuts 3 edges in expectation.
Let’s consider the matrix representation of a pseudoexpectation which corresponds to the local

distributions. Namely, for Ẽ[xixj ], we write down the corresponding local moment. The corre-
sponding table is: 

1 1/2 1/2 1/2
1/2 1/2 0 0
1/2 0 1/2 0
1/2 0 0 1/2

 .

The above is not PSD. But you can replace the 0s with 1/8, and the resulting matrix is PSD, and
has pseudoexpectation 2.5. (But SoS can certify upper bound better than 3, so you can’t push this
counterexample all the way up to 3.)

Remark. The local distribution µS is unique, given Ẽ of degree d and S ⊂ [n], |S| = t� d. This
is because µS is defined uniquely by {ẼxT : T ⊂ S}, which is fixed.

Remark. It turns out that local distributions are strictly weaker than SoS: difference between
Sherali-Adams and Lasserre-Parrillo.

Conditioning. Think about conditioning on xi = 1 or xi = 0. Given Ẽ so that Ẽxi > 0 (for
actual distributions, if expectation is 0, then it never can take the value 0).

Define a new linear opterator Ẽ[·|xi = 1] : R[x]≤deg Ẽ−2
→ R as follows:

Ẽ[p(x)|xi = 1] :=
Ẽ[p(x) · xi]

Ẽxi
.

This is completely analogous to how you define a conditional distribution. It is a simple exercise to
check that this is a pseudoexpectation of degree deg Ẽ− 2. Normalization and linearity are trivial.
To check positivity:

Ẽ[q(x)2|xi = 1] =
Ẽ[q(x)2xi]

Ẽxi
=

Ẽ[q(x)2 · x2
i ]

Ẽxi
≥ 0,

where the last equality uses linearity. Similarly, we can define

Ẽ[p(x)|xi = 0] :=
Ẽp(x) · (1− xi)

Ẽ(1− xi)
.

Note that we have used that Ẽ(1−xi) ≤ 1, as can be shown by noting that Ẽ(1−xi) ≤ Ẽ1+Ẽ(1−xi)2
2 =

1+Ẽ(1−xi)
2 . Similarly we have used that Ẽxi ≤ 1.

12



Remark. Note that conditioning can be generalized beyond the hypercube as follows: if you
replace xi or 1 − xi above with some square, you boost the probability of the input polynomial
appropriately. This is called “tilting”.

Proving Theorem 2.2. Let’s now prove our theorem about dense graphs. We will even give
a rounding algorithm that gives us a cut. One really obvious idea to do rounding is independent

rounding: given Ẽ, sample yi ∼

{
0 wp 1− Ẽxi
1 wp Ẽxi

. This is the same as taking the local distribution

induced by Ẽ on xi and sampling according to that local distribution.
Is this a good idea? Note that it is basically the idea behind randomized rounding of LPs (since

LPs are basically degree-1 PEs with some linear constraints).
Thought experiment: imagine the PE has local distributions that are close to independent. In

particular, look at

Ei,j∼[n]|µij − µi ⊗ µj |TV ≤ δ,

where we take i, j uniformly and independently from [n]. The claim here is that independent
rounding works very well:

Lemma 2.3. If the above assumption holds, then

EG(y) ≥ ẼG(x)− δn2.

The key here is that if G is dense, then δn2 is very small.

Proof. Note that

EG(y) =
∑
i∼j

Pr(yi 6= yj) =
∑
i∼j

Prxi∼µi,xj∼µj (xi 6= xj)

≥
∑
i∼j

(
Pr(xi,xj)∼µij (xi 6= xj)− |µij − µi ⊗ µij |TV

)
≥
∑
i∼j

Ẽ(xi − xj)2 −
∑
i,j

|µij − µi ⊗ µj |TV ≥ ẼG(x)− δn2.

Here µij is the local distribution on (i, j) induced by Ẽ.

We still have to show approximate independence; to do so, we use the pinning lemma:

Lemma 2.4 (Pinning lemma). Let Ẽ be degree d, with d� n. Then there is t ≤ d/2− 2 so that if
S ⊂ [n] is random with |S| = t and yS ∼ µS, then by pinning the variables in S to yS, we have

ES,ySEi,j‖µi,j|yS − µi|yS ⊗ µj|yS‖TV ≤ O(1/
√
d).

Here µij|yS is defined by taking the conditional pseudo-expectation conditioned on xS = yS and
then defining the corresponding local distribution.

To prove the lemma, what happens if EiEj‖µij−µi⊗µj‖TV � δ? If we take a typical coordinate
i, then it is correlated with most other coordinates j. In particular, if we know i, then we learn a
lot about most other coordinates. If this quantity stayed large, we could do the same thing again,
and so on. But the idea is there is only so much to learn about all the coordinates in the graph.
At this stage you’ve broken the local correlations. To do it formally, we use information theory.
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Information theory background. We use H to denote entropy and I to denote mutual infor-
mation.

1. If X,Y ∈ {0, 1}, then H(X), I(X;Y ) ∈ [0, 1].

2. I(X;Y ) = H(X)−H(X|Y ).

3. Pinsker’s inequality: |µXY − µX × µY |TV ≤
√
I(X;Y )/2. All we need is that this holds up

to a polynomial.

Now we prove the pinning lemma.

Proof of Lemma 2.4. Given Ẽ, define a random sequence of PEs as follows: Ẽ0 = Ẽ, Ẽ1, . . . , Ẽd/2.
Here Ẽs is given as follows: draw i ∼ [n]\{ indices used so far }, draw yi ∼ µs−1

i (the local distri-

bution on coordinate i under Ẽs−1), and then set Ẽs = Ẽs−1|(xi = yi).

Exercise. The above distribution over PEs leads to some Ẽd/2 which has the same distribution
as if we were to choose a random subset of size d/2 and condition on the variables in that subset.
A related (more basic) exercise is that we can define conditioning on {xi}i∈S = {yi}i∈S by Ẽ[·|yS =

xS ] = Ẽ[··1{yS=xS}]
Ẽ1···

.

Define globS = Ei,jI(Xs
i ;Xs

j ) joint from µsij , where Xs
ij is a sample from the local distribution

for coordinates (i, j) for the pseudoexpectation Ẽs.
Fix a time s where you stop. If Eglobs ≤ δ (outer expectation is over all the randomness that

defines expectations), then EEij |µsij − µsi ⊗ µsj |TV ≤ O(
√
δ). This is just pinsker’s inequality.

So, it suffices to show that there is some s so that EglobS ≤ O(1/d).
Define a potential function:

Φs := EEi∼[n]H(Xs
i ),

where Xs
i is drawn from its 1-wise marginal under the local distribution for Ẽs. The idea is that

this potential function must drop if there’s a lot of local correlation:

Claim 2.5. Φs − Φs+1 ≥ Ω(EglobS).

Note that when we condition on some variables we will no longer sample from them in the
future, and so we have to be careful about i ∼ [n] (the istribution isn’t completely uniform, so we
lose some constant factor in the above claim, which is ok).

Proof of lcaim. Recall that

I(Xs
i ;Xs

j ) = H(Xs
i )−H(Xs

i |Xs
j ).

Now let’s average both sides over all i, j. Certainly Ei∼[n]H(Xs
i ) = Φs. Moreover,

EjEiH(Xs
i |Xs

j ) = Φs+1. (6)

This holds because to get Ẽs+1 we choose a coordiante j at random and then condition on its value
drawn from the distribution µsj . The average entropy of Xs

i under this conditioning is exactly the
definition of conditional entropy.

Moreover, EijI(Xs
i ;Xs

j ) = globS by definition.
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As a result of the above claim, we get that

1 ≥ Φ0 − Φd/2 ≥ Ω

 d/2∑
s=0

EglobS

 ≥ 0,

where the final inequality followos since mutual information is non-negative. Then we get that
there is some s so that EglobS ≤ O(1/d) by an averaging argument.

Now we prove the dense max-cut theorem.

Proof of Theorem 2.2. Note that we can find the low global correlation distributions guaranteed
by the pinning lemma in polynomial time: we can simply do brute force search over all subsets S
of size at most d/2, and compute the conditional distributions: all of these steps take time nO(d),
and we already need that much time for solving SDPs.

Given Ẽ, we know from the pinning lemma that there exists s ≤ poly(1/ε) so that

EẼ′∼pinningẼij‖µ
′
ij − µ′i ⊗ µ′j‖TV ≤ ε10, (7)

where here Ẽ′, µ′ denote the pinned pseudoexpectation and local distributions. Furthermore, we
have that

EpinningẼ′G(x) = ẼG(x).

This second statement is an exercise; the idea is that when we do the conditioning we sample things
from the correct distribution at each step.

By Markov’s inequality, with probability 1− ε5, Eij‖µ′ij − µi ⊗ µ′j‖TV ≤ ε5.

Similarly, with probability at least 10ε5, Ẽ′G(x) ≥ (1−ε)·ẼG(x), where we use that ẼG(x), Ẽ′G(x)
are between 0 and n2; in particular, we’re using Paley-Zygmund here.

Thus, there exists Ẽ′ so that independent rounding gives Ey∼µ′G(y) ≥ (1−O(ε)) · ẼG(x).

Note that the algorithm is very simple: solve for a PE Ẽ maximizing ẼG(x) using SDP. Consider
all subsets of at most poly(1/ε) variables and assignments of those variables, and consider the
resulting pinned pseudoexpectation. Then for that pseudoexpectation, do independent rounding,
which will give a large cut value in expectation (Lemma 2.3).

2.4 Max-cut on structured instances

So far, we have only used Sherali-Adams: we have only looked at the local distributions. As we
saw, this is weaker than SoS since local distributions (even on a triangle) can fool you more than
SoS in terms of the max-cut value.

Suppose G is ∆-regular, and let AG be the normalized adjacency matrix. Let the eigenvalues of
AG be 1 = λ1 ≥ λ2 ≥ · · · ≥ λn. We have that λ2 ≈ ε� 1 if and only if G is an expander. Roughly
speaking, expanders are sparse approximations of the complete graph.

Theorem 2.6. For every ∆-regular G,

d G(x) ≤
(

1 + d−Ω(1) + λ
Ω(1)
2

)
·max

y
G(y).
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The above is a generalization of the fact for dense graphs. The diea is that if λ2 is small, then
the approximation factor is close to 1.

To prove the above theorem, we use a similar approach to previously. What went badly with
independent rounding? We cared about the error:∑
i∼j
|Pr(xi 6= xj ∼ µi ⊗ µj)− Pr(xi 6= xj ∼ µij)|TV ≤

∑
i∼j
‖µij − µi ⊗ µj‖TV ≤

∑
i,j∈[n]

‖µij − µi ⊗ µj‖TV .

In a dense graph, the second inequality is fine, but in a sparse graph, it is very loose.
For expander graphs we have a local to global phenomenon.

Definition 2.2. Given a degree-2 PE Ẽ over {0, 1}n, define yi(xi) = 2xi−1, and it is straightforward
to check that p(y) 7→ Ẽp(y) is a pseudoexpectation over {−1, 1}n. We define

Covij = Ẽyiyj − ẼyiẼyj .

Define globCorr = Ei,jCov2
ij (expectation over all pairs (i, j). Further, define localCorr = Ei∼jCov2

ij .
In particular, local correlation is over all edges of the graph.

Lemma 2.7. For {0, 1}-valued random variables X,Y , Cov(X,Y )2 ≤ O(I(X;Y )). Furthermore,
Cov(X,Y ) ≥ poly(‖PX ⊗ PY − PXY ‖TV ).

We don’t prove the above (standard/easy fact).
the idea is as follows: we can get upper bound on global information, and thus global correlation,

using pinning. We can also get a lower bound on local correlation. So we want to relate local and
global correlation. To do so, we prove:

Lemma 2.8. Let Ẽ be a degree-4 PE. Then localCorr ≤ globalCorr +O(λ).

Given the above, we can show that the above lemma can be plugged into everything we did
today about pinning and global correlation to get the desired result about max-cut in expanders.

Proof. We ahve

v>AGv =
1

∆

∑
i∼j

vivj =
1

n

∑
i,j

vivj +
∑

2≤j≤n
λj〈v, wj〉2,

where wj is the jth eigenvector of AG, normalized so that ‖wj‖ = 1.
Then let’s look at local correlation:

Ei∼j(Ẽyiyj − ẼyiẼyj)2 = Ei∼j(Ẽ[(yi − Ẽyi)(yj − Ẽyj)])2

= Ei∼jẼ(yi − Ẽyi)(y′i − Ẽy′i)(yj − Ẽyj)(y′j − Ẽy′j)

= ẼEi∼j(yi − Ẽyi)(y′i − Ẽy′i)(yj − Ẽyj)(y′j − Ẽy′j).

The first equality is because everything is only on O(1) variables, so we need the pseudoexpectation
to be of constant degree.
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Define Vi(y, y
′) = (yi − Ẽyi)(y′i − Ẽy′i). Then we have that the above is equal to

1

n∆
Ẽ
∑
i∼j

Vi(y, y
′)Vj(y, y

′) =
1

n
Ẽ

 1

n

∑
i,j

Vi(y, y
′)Vj(y, y

′) +
∑

2≤j≤n
λj〈v, wj〉2


= ẼEi,jVi(y, y′)Vj(y, y′) +

1

n
Ẽ
∑

2≤j≤n
λj〈v, wj〉2.

We claim that the first term above is the global correlation (do the same manipulations as previously
in reverse). To deal with the second (error) term, we want ti to be at most λ2. Here we go beyond
PEs: we use pseudoexpectations applied to squares of polynomials that depend on more than a
few variables! In particular, we write

λ2 · I −
∑

2≤j≤n
λj · wjw>j � 0.

This is because the wj are orthogonal and λ2 ≥ λj for j ≥ 2. Let’s take the Cholesky decomposition
of the above matrix, and in particular we have

Ẽ

v>(λ2 · I −
∑

2≤j≤n
λjwjw

>
j )v

 = Ẽ
∑
i

pi(v)2 ≥ 0,

where the final inequality follows because we have a sum of squares. Rearranging, we get that

Ẽ
∑

2≤j≤n
λjv
>wjw

>
j v ≤

1

n
λ2 · ẼV (y, y′)>IV (y, y′) =

λ2

n
Ẽ
∑
i

Vi(y, y
′)2 ≤ λ2,

where the final inequality follows since the Vi are bounded by at most 1 (which holds in pseudoex-
pectation, by locality).

3 September 30, 2022

Today we will tlak about refuting random CSPs (consttraint satisfaction problems). A CSP is
defined by a predicate φ : {−1, 1}k → {0, 1}. We will assume that Ex∼{−1,1}k [φ(x)] < 1; in
particular, φ is not satisfied with probability 1. In particular, an instance of a CSP consists of:

1. Variables x1, . . . , xn.

2. Tuples S1, . . . , Sm ∈ [n]k, which say which variables are contained in each predicate.

3. Vectors y1, . . . , ym ∈ {−1, 1}k, which specify the negation pattern for each predicate.

The constraints of a CSP then consist of the following m conditions:

{φ(xSi ◦ yi) = 1}mi=1.

For instance, if S = (1, 2) and y = (1,−1), then xS1 ◦ y1 is the string (x1,−x2). The individual
constraints above are often called clauses.

Examples of CSPs:
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• Max-Cut: φ(x0, x1) is the not-equal predicate for x0, x1 ∈ {−1, 1}.

• SAT: φ = OR.

• NAE-SAT: φ is 1 if at least one of the xi is 1, and not all are 1.

In the worst case, CSPs are notoriously hard, but there are empirical solvers that work well. So,
there is something tractable going on. This is some motivation to study random instances of CSPs.

3.1 Random CSPs

To generate a an m-clause instance, we simply sample S1, . . . , Sm, y1, . . . , ym uniformly at random.
Today, we will include every S ∈ [n]k with probability m/nk.1 So, the expected number of clauses
is m. We also draw y1, . . . , ym ∼ {−1, 1}k independently at random.

Given ϕ ∼ CSPn,mφ , we could ask the question, what is:

max
x∼{−1,1}n

ϕ(x),

where ϕ(x) =
∑m

i=1 φ(xSi ◦ yi), i.e., what is the maximum number of clauses we can satisfy? It
turns out that due to concentration, we have maxx ϕ(x) ≈ Eϕ maxx ϕ(x) with high probability, so
we can simply output the expected value, so it’s not a very intereseting problem.

Another possible question we could ask is to find x which is the argmax of the above maxi-
mization problem. It turns out that therea re two regimes here: if m � n, there are typically
no interesting xs, in the sense that maxx ϕ(x) ≈ Ex∼{−1,1}nϕ(x), which is an easy concentration
argument.

On the other hand, if m � n, the CSP is fully satisfiable, in which case there are many xs so
that ϕ(x) = m (i.e., can satisfy all the constraints). You can find such x via local search. There’s
a very small window when you transition between the two regimes. This is an interesting regime,
and algorithms to solve this problem in that regime are not well understood.

So, for us, even finding a good satisfying assignment doesn’t lead to interesting problems.

3.2 Refutation

We will get interesting problems by considering proofs of certain statements. In particular, we
consider the problem of (strong) refutation: given ϕ, output ALG(ϕ) ∈ [0,m] so that:

1. For all ϕ, ALG(ϕ) ≥ maxx ϕ(x). (This is interesting because it has to hold for all ϕ.)

2. EALG(ϕ) ≤ (1− δ)m where δ = Ω(1) as n,m→∞.

We remark that weak refutation allows for δ = o(1) (e.g., 1/m), and we want with high probability
ALG(ϕ) ≤ (1− δ)m.

This is interesting in the regime that m � n. Note that if we design such an algorithm, then
we’ve automatically generated a proof system that can prove interesting upper bounds on the
satisfiability of certain CSPs. This is because the trace of the ALG’s computation is of polynomial
length, and so that computation trace run on ϕ, which generates an output ≤ (1− δ)m, is a proof

1Technically, you should actually include each pair (S, y) with probability m/(2n)k. This allows for the same S
to appear with different negation patterns y.
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that ϕ(x) ≤ (1 − δ)m. This is interesting since often it’s nontrivial to do better than exponential
length proofs.

Notee that as m gets larger (e.g., in max-cut, more edges), it gets harder to completely satisfy
the CSP, and so the problem of refuting CSPs gets easier. Note that as long as m� n, the problem
is nontrivial, and we always have m ≤ nk. In particular, for m = nk, it turns out that the strong
refutation problem is easy (we say this for max cut, for dense graphs, and it holds more generally).
So the question is where in the range m ∈ [n, nk] we can solve the strong refutation problem.

3.3 A potential algorithm

For some even integer d ∈ N, let’s see what value SoS can certify. In particular, given ϕ, find the
least c so that d ϕ(x) ≤ c. This takes time nO(d) (we think of k as a constant).

Theorem 3.1. For all φ (nontrivial), if m� nk/2 · logO(1) n, there exists δ > 0 so that with high
probability over ϕ,

O(k)
ϕ(x) ≤ (1− δ)m.

The first step in the proof is to reduce to one particular CSP, in particular k-XOR, which is
defined as follows:

φ(x) =

{
1 : if

∏k
i=1 zi = 1

0 : if
∏k
i=1 zi = −1

.

Moreover, for the XOR predicate, φ(xS◦y) depends only on
∏
i∈S xi ·

∏
i≤k yi. Thus, the only feature

of the literal pattern y that matters is its parity. Thus, WLOG, we can replace yi ∈ {−1, 1}k with
a single boolean value ai ∈ {−1, 1}.

Definition 3.1. Given a k-XOR instance, we define a polynomial:

ψ(x) =
m∑
i=1

ai ·
∏
j∈Si

xj = # sat - # unsat .

This is not the polynomial we had before, which was counting the number of satisfied assignments.
In contrast, ψ(x) counts the number of satisfied minus unsatisfied assignments.

Note that k-XOR is interesting because the Fourier decomposition of boolean functions. In
particular, a general k-CSP problem breaks down into a number of k′-XOR CSPs.

Returning to the case of general φ, we write the Fourier decomposition φ(z) =
∑

T⊂[k] φ̂T · zT ,

where zT =
∏
i∈T zi. Now take a random ϕ ∼ CSPn,mφ . We build 2k k′-XOR instances, for k′ ≤ k.

Now we can write

ϕ(x) =
∑

φ(xSi ◦ yi) =
∑
T⊂[k]

φ̂T
∑
i

∏
j∈T

yij
∏
j∈T

(xSi)j .

where the zs are the x times y values. Each T now gives some function ψT so that ϕ(x) =∑
T φ̂T · ψT (x), where we have defined ψT =

∑
i

∏
j∈T yij

∏
j∈T (xSi)j .

Note that the ψT are indeed random k′-XOR instances, for k′ = |T |. This is because we
construct 2k different k′-XOR instances for each (random) set Si.
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If we have
O(k)

ψT (x) ≤ εm and
O(k)

ψT (x) ≥ −εm (we need both signs since the φ̂T can be

negative), then by summing up the proofs, we get that

O(k)
ϕ(x) ≤ φ̂∅ +

∑
T⊂[k],T 6=∅

φ̂T · ψT (x) ≤ m ·
(
φ̂∅ + 2k · ε

)
.

Our assumption on nontriviality gives that φ̂∅ < 1. If we can take ε � 2−k, then we can refute
ϕ(x).

Note that by symmetry in the distribution (since ψ and −ψ show up with the same probability),
if we can prove

O(k)
ψT (x) ≤ εm with high probability, then we can prove

O(k)
ψT (x) ≥ −εm

with the same probability.
Remark. If it turns out that the Fourier expansion of φ(x) has all terms of degree at most

k0, then we can do everything with k replaced by k0. As an example, for φ = 3 − NAE − SAT ,
then you can check that φ̂{1,2,3} = 0, and os you can refute with m ≈ n (as opposed to m ≈ n1.5)
clauses.

Main tools.

1. Spectral SoS certificates. The following is a very powerful way to generate SoS proofs.

Lemma 3.2. Suppose that

f(x) = (x⊗d/2)>Mx⊗d/2

over {−1, 1}n, for some symmetric matrix M . Then d f(x) ≤ nd/2 · ‖M‖σ, where ‖M‖σ
denotes the maximum singular value of M .

Proof. Note that ‖M‖σI −M � 0. Then any PSD matrix can be factorized as a square, as
follows:

(x⊗d/2)> · (‖M‖I −M)x⊗d/2 � 0,

where we abuse the notation � 0 to mean that it can be written as a sum of squares. The LHS
of the above is ‖M‖·‖x⊗d/2‖2−f(x), which has a SoS proof that it is equal to ‖M‖·nd/2−f(x)
(since we’re working over the {−1, 1}-hypercube), and this is what we want to show.

2. Matrix bernstein inequality. Since are dealing with random CSP instances, we will need
to argue about random matrices. We first review the standard Bernstein inequality.

The idea is as follows: Suppose that A1, . . . , An are random variables so that |Ai| ≤ R,
they are independent, and EAi = 0 for each i. Then

∑
iAi should be roughly a Gaussian

with variance E
∑

iA
2
i . This is true in some regime (which doesn’t hold when one of the Ai

dominates).

Here’s the formal statement of the matrix version:

Lemma 3.3. Suppose that A1, . . . , An ∈ Rd×d are symmetric, random matrices with EAi = 0
and ‖Ai‖ ≤ R with probability 1 for all i. Then

E‖
∑
i

Ai‖ ≤ O

∥∥∥∥∥E∑
i

A2
i

∥∥∥∥∥
1/2

·
√

log d+R log d

 ,

where we use ‖ · ‖ to denote spectral norm.
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3.4 Refutation for 2-XOR

We do the cases k = 2, 3, 4. Let’s start with k = 2. Here we have ψ(x) =
∑

i,j aijxixj , where
aij ∈ {−1, 1} if (i, j) is a clause, and 0 otherwise. There is a vanishing probability where some (i, j)
shows up both in a negative and positive clause, which we ignore (it’s negligible).

We can write ψ(x) = x>(
∑

i,j aijEij)x, where Eij is the matrix in Rn×n with all 0s except for
1/2 entry at the (i, j) and (j, i) positions.

Some intuition for random (symmetric) matrices. Recall that ‖M‖F =
√∑d

i=1 λ
2
i , where λi are

the eigenvalues of M . If M is unstructured then all eigenvalues should be roughly equal in the sense
that the top eigenvalue behaves like the average one, so we roughly have maxi λi ≈ ‖M‖F /

√
d.

Now why should
∑

i,j aijEij be unstructured in the above sense? In each entry, we have put 0

or ±1 with some appropriate probability (namely m/n2). As large as m� n, each row has at least
a super-constant number of nonzero entries, which are different whp, so it seems that it should be
of full rank. To reason formally about this, we use Matrix Bernstein.

In particular, we need to bound E
∑

i,j a
2
ijE

2
ij : ignoring constants, we have

E
∑
i,j

a2
ijE

2
ij ≈

∑
i,j

m

n2
E2
ij ≈

m

n2

∑
i,j

Eii + Ejj � O
(m
n2
· n · I

)
= O(

m

n
I),

where we have used that E2
ij = 1/4 · (Eii + Ejj). Furthermore, we have used the fact that in the

final inequality that each Eii appears n times (since there are n values of j). We also note that
‖Ei,j‖ ≤ 1 and |aij | ≤ 1, so by Matrix bernstein, we get that

E‖
∑

aijEij‖ ≤ O
(√

m/n ·
√

log n+ log n
)
≤ O(

√
m/n ·

√
log n),

where we have used that we will take m ≥ n log n. By Markov’s inequality, we can get that the
above holds up to a factor of 2k with probability 1− 2−k.

Now we can use spectral SoS certificates with d = 2: we have
O(1)

n ·
√
m/n ·

√
log n. When is

this � ε ·m?, for ε a tiny constant?
This holds as long as

√
nm log n� εm, i.e., as long as n logn

ε2
� m. Thus, with high probability,

degree O(1) SoS refutes 2-XOR. (It’s actually degree 2 here.)

3.5 Refutation for 4-XOR

Now let’s do k = 4. Now we have ψ(x) =
∑
aijklxixjxkx`. One thing we can do is view it as a

2-XOR instance in n2 variables where we consider the variables to be xixj , for all pairs (i, j).
We will actually argue more directly and sketch out how things can be generalized from above.

In particular, we can write:

ψ(x) = (x⊗2)>(
∑

aijklEijkl)x
⊗2,

where Eijkl hs an n2 × n2 matrix with nonzero entries at places like (ij, k`), (jk, i`), and so on.
Now we use the same argument as for k = 2: we have that

‖E
∑

aijklEijkl‖2F ≤ m/n2,

and so by Matrix Bernstein we get that ‖
∑
aijklEijkl‖ ≤

√
m/n2 with high probability. Thus, we

have
O(1)

ψ(x) ≤ n2 ·m/n = n
√
m� m if m� n2.
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3.6 What about k = 3?

Turns out the case of odd k is somewhat more challenging. One possibility is to write ψ(x) =∑
aijkxixjxk = x> ·M · x⊗2, where M is an n× n2 matrix. We want the matrix to be symmetric,

so we can write it as: (x, x⊗2)> ·M ′ · (x, x⊗2), where M ′ is (n+ n2)× (n+ n2) and has the n× n2

blocks equal to M . The issue is if we try to do this, we run into issues because we can’t spread
out the eigenvlaues over all n2 entries, as M ′ only has rank at most 2n. This approach will give
refutations using m = n2 clauses, but we want m = n1.5, so off by a polynomial factor.

We will search instead for a square matrix: try to use SoS reasoning on ψ to find a different
polynomial which is more amenable to being arranged as a square matrix. Let’s write

ψ(x) =
∑
ijk

aijkxixjxk =
∑
i

xi
∑
j,k

aijkxjxk.

Let’s do Cauchy-Schwarz:

ψ(x)2 = (
∑
ijk

aijkxixjxk)
2 � (

∑
i

x2
i ) · (

∑
i

(
∑
j,k

aijkxjxk)
2),

where the inequality is a SoS proof (this is on the PSET). Note that
∑

i x
2
i = n since we’re on the

{−1, 1}n hypercube. So we need to focus on the second polynomial on the RHS. Let’s think of the
coefficients aijk as arranged in some 3-tensor. For each i, we consider the ith slice which is aijk,
for j, k ∈ [n]. We write Ai = (aijk)j,k As this matrix, so the whole term is∑

i

(x>Aix)2.

Now we want to write the above as a quadratic form. We have two options:

1. First, we can write

(x>Aix)2 = (x⊗2)>A[i(A
[
i)
>(x⊗2),

where A[i is the flattened version of Ai, written as an n2-dimensioanl vector. In particular,
(A[i)(j,k) = Ai(j, k). Note that the rank of the matrix (A[i(A

[
i)
>) is 1, and we sum n of them

up, so get rank at most n. This is bad, since we want things to be of higher rank. It turns
out that if we use matrix Bernstein here, it won’t improve on m = n2 clauses.

2. Alternatively, we can write

(x>Aix)2 = (x⊗2)>(Ai ⊗Ai)x⊗2.

The matrix Ai⊗Ai has rank equal rank(Ai)
2, which could be larger (good!). We will go with

this approach.

So we will write ∑
(x>Aix)2 = (x⊗2)>(

∑
i

Ai ⊗Ai)x⊗2.
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We can’t quite use Matrix bernstein sincee we don’t have 0 expectation. First, we have to compute:∑
i

(x⊗2)>(EAi ⊗Ai)x⊗2 = p(m,n) · ‖x‖4,

where p(m,n) is some small polynomial: just need to check which entries are 0 after expectation.
Now, by matrix Bernstein, we have to make some careful choices to get independent matrices,

and we get an upper bound on

‖
∑
i

Ai ⊗Ai − EAi ⊗Ai‖,

and then you can run the same argument as k = 2, 4. It turns out that
∑

iAi ⊗ Ai has roughly
m nonzero rows (and roughly rank m), which is better than n nonzero rows which we got from
before.

So, so far we have gotten that 6 ψ(x)2 ≤ εm whp if m ≥ n1.5 · poly(log n, 1/ε).
How do we actually get an upper bound on ψ(x)? We use the following basic fact:

Lemma 3.4. If d f
2 ≤ B, then d f ≤

√
B.

Proof. We use that

f = f · 1

B1/4
·B1/4 � 1

2
·
(
f2

√
B

+
√
B

)
� 1

2
·
(
B√
B

+
√
B

)
=
√
B.

3.7 Application: tensor completion

Let’s first recall the problem of matrix completion. We are given some matrix A ∈ RU×M (say
users and movies), where Aum ∈ [−1, 1] denotes whethe user u likes movie m. We are given some
entries, and we want to fill in the matrix so that it is low rank. In particular, we assume that
M =

∑r
i=1 uiv

>
i for some small r. The idea is that ui represents features of users and vi represents

features of movies.
The number of parameters need to specify M if it is of rank r is O(r · (m+n)), where we write

the dimensions as A ∈ Rn×m now. It turns out that you can do this if you’re given O(n+m) entries
of A with r = O(1), in polynomial time.

What about tensor completion? Let’s consider a 3-tensor (think users, restaurants, and times
of day – Sam calls this the “Yelp problem”). Let’s now assume we have a low-rank tensor T =∑R

i=1 ui ⊗ vi ⊗ wi.
If we flatten T into a matrix of the form

∑
i ui(vi ⊗ wi)>, the resulting matrix has rank r as

well. How well does this do? If all dimensions are n, then T is specified by O(rn) entries. The
matrix completion problem requires that we need O(r · (n+n2)) entries since we need to scale with
the long dimension.

Can we do this with fewer than O(rn2) entries?

Theorem 3.5 (Barak & Moitra). There exists a poly-time algorithm to complete T using Õ(n1.5)
entries.
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The n1.5 should look a lot like the number of clauses needed to refute a random 3-CSP.
Let’s say more formally what the above theorem means. Let’s for simpliciy make the symmetry

assumption T =
∑r

i=1 ui⊗ui⊗ui, where ‖ui‖∞ ≤ 1. Then if you are given Õ(n1.5) random entries
of the tensor T , you can find some X ∈ Rn×n×n, so that

E‖X − T‖22 ≤ poly(r) · n3 ·
(
n1.5 log n

m

)Ω(1)

,

where the poly(r) is a constant, n3 is for normalization, and the final term becomes o(1) as m �
n1.5 · log n. The expectation is over the random set Ω ⊂ [n]3 of entries of size |Ω| = m that we see.

Now observe that 1
r ·T = Eµx⊗3. What is the distribution x ∼µ {−1, 1}n that makes this true?

first sample i ∼ [r] uniformly, and then sample xj ∼ bias(ui(j)). Note that

Tjkl =
1

r
·
∑
i

E[x⊗3|i]jkl =
1

r

∑
i

ui(j)ui(k)ui(l),

which holds for j, k, l distinct. There’s a slight issue with j, k, l not distinct which will be fixed in
the notes.

If we could find a distribution µ so that Eµx⊗3 ∝ T , then we’d be good in terms of getting a
tensor decomposition. We can’t do this, but can search for a pseudodistribution. So the alg is as
follows:

1. Find a degree O(1) Ẽ so that 1
rTijk = Ẽxixjxk for all (i, j, k) ∈ Ω.

2. Output r · Ẽx⊗3.

We want to show that if a pseudoexpectation agrees with T in the entries in Ω, then it has to agree
with all entries of the tensor (up to some approximation error). In particular, we want to upper
bound

EΩ sup
Ẽ

Eijk
(
Tijk − Ẽxixjxk

)2
− Eijk∼Ω(Tijk − Ẽxixjxk)2.

We will find Ẽ so that the second term is 0. We want to show that for all pseudoexpectations, the
second term is bounded above by the first term plus some small error. Note that this begins to
look like uniform convergence from learning theory.

Let us write T ′ = T/r. To bound the above, we introduce a ghost sample Ω′:

EΩ sup
Ẽ

EΩ′Eijk∼Ω′(T
′
ijk − Ẽxixjxk)2 − Eijk∼Ω(Tijk − Ẽxixjxk)2.

By Jensen, the above can be upper bounded by:

EΩ,Ω′ sup
Ẽ

Eijk∼Ω′(T
′
ijk − Ẽxixjxk)2 − Eijk∼Ω(T ′ijk − Ẽxixjxk)2.

Now we do symmetrization, which allows us to rewrite the above as

EΩ,Ω′,σijk sup
Ẽ

Eijk∼Ω′σijk(T
′
ijk − Ẽxixjxk)2 − Eijk∼Ωσijk(T

′
ijk − Ẽxixjxk)2,
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where σijk ∈ {±1} are uniformly random signs. By triangle ienquality, the above can be bounded
above by

2EΩ,σijk sup
Ẽ

Eijk∼Ωσijk(T
′
ijk − Ẽxixjxk)2.

Now let’s expand the square:

EΩ,σ sup
Ẽ

Eijk∼Ω σijk(Ẽxixjxk)2 + · · · .

Now we do a trip that we’ve used before: we define a new pseudoexpectation over “independent
copies”, variables x′, that allow us to rewrite the square:

EΩ,σ sup
Ẽ

Eijk∼Ω σijkẼxix′ixjx′jxkx′k + · · · .

Now let us define variables yi = xix
′
i, and for any Ẽ on x, x′, it is also a pseudoexpectation on the

yi (and is in particular a PE on the cube). So we have:

EΩ,σ sup
Ẽ

Ẽ
1

Ω

∑
i,j,k∈Ω

σijkyiyjyk + · · · .

This is exactly a random polynomial of exactly the form we considered above, and you can get an
upper bound on the above as we showed.

4 October 7, 2022

Today we talk about SoS beyond the hypercube, and an application to robust mean estimation.
In particular, let’s consider any subset Ω ⊂ Rn: we want subsets that have some sort of short
description. In particular, we focus on sobusets that are defined by polynomial inequalities (called
semialgebraic).

Consider some m ≤ poly(n) and a set of inequalities

A = {f1(x) ≥ 0, . . . , fm(x) ≥ 0}.

Then define Ω = {x ∈ Rn : fi(x) ≥ 0 ∀fi ∈ A}. Note that to encode an equality gi(x) = 0, we
can encode it as the two equalities gi ≥ 0, gi ≤ 0.

Two kinds of questions we care about:

• Is the set Ω nonempty?

• Given some other function g : Rn → R, what is maxx∈Ω g(x)?

This is a direct generalization of our discussion pertaining to the hypercube: there we have A =
{x2

i − xi = 0}ni=1. For the above questions, each has a trivial form of witness in one direction but
not in the other direction (e.g., lower bounds on max g are trivial to witness, upper bound sare
harder).
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4.1 Pseudoexpectations on general sets

Definition 4.1. Given a set of inequalities A, we say that A d g ≥ 0 if there exists a set
of inequalities pS , S < [m] (i.e., S ranges over multi-subsets of [m]), so that each pS is a SoS
polynomial, and for all x ∈ Rn,

g(x) =
∑
S<[m]

pS(x) ·
∏
i∈S

fi(x). (8)

Furthermore, each term pS(x) ·
∏
i∈S fi(x) must be a degree ≤ d polynomial.

Clearly, if A d g ≥ 0, then we must have g(x) ≥ 0 for all x ∈ Ω: this is because fi(x) ≥ 0 for
all x ∈ Ω. Typically we have m at most polynomial in n, and d at most constant or growing very
slowly in n. So, the only subsets S < [m] which show up will be very small ones (e.g., constant
size, if d is constant). Thus the sum is over a polynomial-size set.

Given the set {pS}, how do we verify (8)? We can verify in polynomial time that the equality
holds by looking at the coefficients of both sides of the equation. The above definition can be seen
to coincide with our definition over the hypercube: we have to use that anything which is identically
0 over the hypercube lies in the ideal generated by the polynomials x2

i − xi.
Some basic questions are:

• Do SoS proofs exist?

• Do small-degree proofs exist?

• Do small size proofs exist?

Before answering the above question, we need one more definition:

Definition 4.2. A refutation is the constant polynomial g(x) ≡ −1, where A satisfies that A d
g ≥ 0. This tells you that Ω must be empty: the axioms A cannot simultaneously be satisfied by
any x.

4.2 Basics for SoS proofs over general domains

Theorem 4.1 (Positivstellensatz). For all A, either Ω is nonempty, or there exists some d so that
A d −1 ≥ 0.

In particular, for all semialgebraic sets, either it is nonempty or there is some degree (perhaps
super large as a function of axioms) so that there is a SoS proof that the set is empty. The above
is phrased in the retutation setting: if we’re interested for the optimization setting, we can always
add some constraint on the function g we’re optimizing to the set of axioms. In particular, we want
to sknow if g(x) ≤ C for all x ∈ Ω: then we can consider the set A′ = A ∪ {g(x)− c ≥ 0}, and try
to refute A′.

In terms of whether small size proofs exist: for the hypercube, we knew that low-degree proofs
can be expressed in a small (polynomial) number of bits (HW problem). This turns out to no
longer be true for the setting of general inequalities A. In particular, there are examples where
the degree of the axioms fi is constant, the degree of the proof (called d) is constant, yet the bit
complexity of the proofs is too big. The good news is such examples are pathological and won’t
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really hurt us (so these types of examples aren’t really important for us, at least for known TCS
applications).

Over the hypercube, we were able to give generic statements about polynomial-time algorithms:
the reason for this is that we knew bounds on the coefficientts. This becomes messier for general
A.

The bad news for us is that the degree of any proof might be very large. This is what we spend
lots of time on.

4.3 Composability

Now we develop some tools for coming up with SoS proofs of inequalities over general domains:
given a set A of axioms:

• If A d f ≥ 0 and A d g ≥ 0, then A d f + g ≥ 0. Why? Just add the two proofs.

• If A d f, g ≥ 0, then A 2d fg ≥ 0. Why? Just multiply the two proofs (since a product of
SoS polynomials is a SoS polynomial). We write this one out in more detail: If A = {f1 ≥
0, . . . , fm ≥ 0}, f =

∑
S pSfS , g =

∑
S pSgS , then

fg =
∑
S,S′

pSqS′fSfS′ .

Now pSqS′ is a SoS, and fSfS′ is a subset of axioms, corresponding to SsqcupS′.

• Consider sets A,B,C of axioms. If A d B,B d′
C, then A

dd′
C.

• Write x = (x1, . . . , xn), y = (y1, . . . , yN ). If A(x) d
x
g(x) ≥ 0, and each xi is a result of

evaluating some polynomial in the y, i.e., xi(y1, . . . , yN ), then we have A(x(y))
d·maxi deg(xi)

y

g(x(y)) ≥ 0. This is trivial to prove (by substitution). Here to prove some statement about
the y’s, we construct some quantity xi’s which are a function of the y’s, and then reason
about the xi’s.

There are many other axioms too; we will use such things very freely.

Proposition 4.2. If f(x) : R→ R, and if f(x) ≥ 0 for all x, then f is a SoS.

The above can be proved easily by the fundamental theorem of algebra. Proposition 4.2 can be
used in the following way: if we want to prove that F (x1, . . . , xn) is non-negative, we can sometimes
reduce it to non-negativity for a polynomial f(g(x1, . . . , xn)), where f is a single-variable function.
Then, if f is actually non-negative, we can use it can be written as a SoS (by the above proposition).

Proposition 4.3. For all f , there exists M ∈ R so that {‖x‖2 ≤ 1} deg f ≤M .

The above proposition isn’t that useful for constructing SoS proofs; but it will be useful to prove
duality theorems in this general setting.
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4.4 Pseudoexpectations

We will now redefine pseudoexpectations to hold over more general domains.

Definition 4.3. A pseudoexpectation is a map Ẽ : R[x1, . . . , xn]≤d → R which is:

• Linear.

• Positive semi-definite, which means that for all p satisfying deg p ≤ d/2, Ẽp2 ≥ 0.

• Normalized: Ẽ1 = 1.

A pseudoexpectation over the hypercube also respected the multilinearity operation. Note that:

• A degree-d PE can be represented with nd numbers.

• The non-negativity constraint (which sometimes is written as Ẽ � 0) is equivalent to

Ẽ(x⊗≤d/2)(x⊗≤d/2)> � 0,

where x⊗≤d is the vector which contains all monomials of degree up to d/2. (Why is this the
case: given a SoS polynomial write out the polynomial as a sum of squares, write the PE
evaluated at each square of the form v>Mv, where M is the above matrix and v is the vector
of coefficients of the thing being squared. The reverse direction is similar.)

Definition 4.4 (Satisfying a system of inequalities). We say that Ẽ satisfies A if for all S < A, for
all p, if deg(p2 · fS) ≤ d, then Ẽ[p2fS ] ≥ 0. We will write Ẽ � A.

This generalizes the condition we had for the hypercube which said that Ẽ[(x2
i − xi)p] = 0.

Some intuition for the above: if we had a distribution µ over Ω, then we have Eµ[p2fS ] ≥ 0.

Note that a much wekaer statement is that Ẽ[fi(x)] ≥ 0 for all fi ∈ A.
Here’s an example: consider the distribution Unif({−1, 1}). Here we have E[x] = 0, yet it does

not satisfy the equality x = 0; in particular, E[x2] = 1.

4.5 Duality

Theorem 4.4. Let A containt ‖x‖2 ≤M . For all even d, for all f ∈ R[x1, . . . , xn]≤d, exactly one
of the following occurs:

1. for all ε > 0, A d f ≥ −ε.

2. There exists Ẽ of degree d so that Ẽ � A and Ẽf ≤ 0.

Next we discuss an algorithmic version of duality.

Theorem 4.5. There exists an nO(d) time algorithm given A which is satisfiable (i.e., Ω is nonempty)
and for which the number m of constraints is m ≤ nO(d) and for which the bit complexity is similarly
bounded by nO(d), and outputs a pseudoexpectation Ẽ, so that Ẽ �2−n A.
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Above, Ẽ �ε A means that for all p so that ‖p‖ = 1 (here ‖ · ‖ refers to the 2-norm when
coefficients are written as a vector), Ẽ[p · fS ] ≥ −ε.

The ideal statement is that Ẽ satisfies A, but we don’t quite get it. Note that if A d ‖x‖
2 ≤M ,

then we can improve the above theorem statement to get that TE � A. But the approximation
error won’t really matter: we typically solve for a PE that satisfies some system of inequalities
(approximately), and then round that PE back to get some x?. When we analyze the rounding
algorithm, we typically have some sequence of inequalities Ẽp1 ≥ Ẽp2 ≥ · · · , derived using the
axioms A. But these inequalities are true if we only have Ẽ �2−n A, as long as the polynomials
‖pi‖ � 2n. This will never amplify the additive errors in any way that hurst us. So, all we have to
ensure is that when we analyze the algorithms, we don’t analyze them using enormous numbers.

4.6 Proofs to algorithms

Typically we have some data-generating process that depends on some parameter θ, which produces
some samples X1, . . . , Xn. We want to find some algorithm θ̂ so that ‖θ̂(X1, . . . , Xn)− θ‖ is small.
Often to prove identifiability, we want to show that going backwards (from “data to theta”) is
possible. Unfortunately this map may be computationally intractable/very complex.

The idea of SoS-proof based algorithms: if we can prove in SoS that identifiability holds, then
we get a poly-time algorithm θ̂ mapping from the data X1, . . . , Xn back to the correct parameter
θ.

Today we instantiate this framework with a very basic example of a robust statistics problem.
Often in statistics, we make some assumption that a population has some properties (e.g., is Gaus-
sian) and then data is drawn from this distribution. In robust statistics, we relax the assumption
on the data distribution:

Definition 4.5 (Strong contamination). Given a distributionD, we say that samplesX1, . . . , Xn ∼ε
D are drawn in the strong contamination model if:

1. X?
1 , . . . , X

?
n ∼ D iid.

2. The adversary looks at the samples X?
1:n and then modifies any εn of them, and hands the

resulting X1, . . . , Xn to the learning algorithm.

The strong contamination model certainly can model situations where the data is actually
generated adversarially. But it can also model situations where there are small (ε-fraction) fraction
of sub-populations that are not modeled by the family of distributions containing D, namely where
you have model-misspecification up to ε error.

In low-dimensional settings, robust statistics heavily studied in 1960s-1970s. But, those algo-
rithms don’t scale to high-dimensional settings. The most basic high-dimensional statistics problem
is robust mean estimation.

Definition 4.6 (Robust mean estimation). Suppose that D is a distribution on Rd, and assume
that EX∼D(X − EX)(X − EX)> � I. We receive ε-contaminated samples X1, . . . , Xn ∼ε D, and
the goal is to find µ̂ so that ‖µ̂(X1:n)− EX∼DX‖ is small.

In the standard setting, taking the empirical average is optimal; but in the adversarial setting,
the adversary can kill this algorithm by taking samples to infinity. Note that, in the presence of
corruptions, we need some assumption on the data generating distribution since it could be that
the distribution the adversary generates is the true distribution.
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Theorem 4.6. With n� d/ε samples, we can find µ̂ so that ‖µ̂−µ‖ ≤ O(
√
ε) with high probability

in nO(1) time.

Note that, for small ε, we can actually get a refined guarantee os ‖µ̂− µ‖ ≤ O
(√

d/n+
√
ε
)

.

Note that the
√
ε is tight since the adversary can confuse you a bit with ε-contamination. The

above theorem was originally proved without SoS. But soon thereafter it was shown how to achieve
the above using SoS, which leads to other algorithms in robust statistics.

Note that for an adversary who moves some small fraction of samples to infinity can be taken
care of naive outlier removal : in particular, discard any samples Xi for which ‖Xi−Xj‖ �

√
d for

many Xj (here
√
d is chosen as an upper bound on the square root of the trace of the covariance).

Then we can just average the remaining samples. Note that with this strategy, the adversary can
still mess you up: if they move all samples to the same point which is distancee

√
d from the true

mean. Then we have, letting [n] = G ∪B consist of the good/bad decomposition of samples,

1

n

n∑
i=1

Xi =
1

n

(∑
i∈G

Xi +
∑
i∈B

Xi

)
≈ε√d µ.

In particular, the empirical mean is off by ε
√
d, so we’re off by a

√
d factor.

4.7 Proofs of identifiability for robust mean estimation

Let’s begin by proving identifiability in a simple way that can be encoded as a SoS proof.

Lemma 4.7. Suppose X,X ′ are random variables on R. Suppose that TV(X,X ′) ≤ ε. Moreover
suppose that V[X],V[X ′] ≤ 1. Then |EX − EX ′| ≤ O(

√
ε).

Roughly speaking: the idea is that we are constrained to only move ε mass from X to X ′, and
we can’t move it too far by the variance bound.

Proof. Let us consider a coupling (X,X ′) so that X = X ′ with probability at least 1− ε. Then

|E(X −X ′)| = |E[1{X 6= X ′}(X −X ′)]| ≤
√
E1{X 6= X ′} ·

√
E(X −X ′)2 ≤

√
ε ·
√

E(X −X ′)2,

where we have used Cauchy-Schwarz and the coupling assumption.
Now we write

E(X −X ′)2 =E(X − EX − (X ′ − EX ′) + EX − EX ′)2 ≤ O(1) ·
(
E(X − EX)2 + E(X ′ − EX ′)2 + (EX − EX ′)2

)
≤O(1) · (1 + 1 + (EX − EX ′)2).

Putting it all together, we get

|EX − EX ′| ≤ O(
√
ε) · (1 + |EX − EX ′|),

and thus |EX − EX ′| ≤ O(
√
ε/(1−

√
ε)) ≤ O(

√
ε).
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High-dimensional variant. Now we generalize the previous lemma to high dimensions.

Lemma 4.8. Suppose X,X ′ are random variables on Rd. Suppose that TV(X,X ′) ≤ ε. Moreover
suppose that Cov(X),Cov(X ′) � 1. Then ‖EX − EX ′‖ ≤ O(

√
ε).

Proof. Take X,X ′ ∈ Rd. Define Y = 〈X,EX−EX′〉
‖EX−EX′‖ and Y ′ = 〈X′,EX−EX′〉

‖EX−EX′‖ . We claim that Y, Y ′

satisfy the conditions of the 1-dimensional lemma. The data processing inequality gives the total
variation distance. The variance is at most 1 in any (unit) direction by the covariance assumption,
and the vector we’re hitting X,X ′ with to get Y, Y ′ is a unit vector.

So, by the previous lemma, we get that

O(
√
ε) ≥ |EY − EY ′| = ‖EX − EX ′‖2

‖EX − EX ′‖
= ‖EX − EX ′‖.

Getting identifiability. In our dream world, the ground-truth samples X?
i have the property

that Cov(Xi)
? ≤ 2 and EX? ≈ µ. In the dream world, we take the corrupted samples, find a large

subset whose empirical covariance is also bounded: namely, find T ⊂ {X1:n}, |T | ≥ (1 − ε)n, and
so that Cov(T ) � 2I. Then we apply the lemma where the two distributions are (1) the empirical
distribution over T , and (2) the true distribution of X?. The idea is that there are only ε points
that are tampered with (so TV is at most O(ε)), and both distributions have bounded covariance,
so the lemma tells us that the distributions have means that are apart by at most O(

√
ε): i.e.,

‖EX∼T [X] − EDX?‖ ≤ O(
√
ε). Note that we have to remove the εn fraction samples for two

reasons: (1) because of the adversary, (2) since we don’t make any concentration assumption, the
true empirical covariance might not be bounded with high probability (this second issue goes away
if we assume, e.g., sub-Gaussianity).

Formalizing the above, to establish identifiability, we use the following lemma:

Lemma 4.9. If n� d/ε then there exist a subset S ⊂ {X?
1:n} with |S| ≥ (1− ε)n, Cov(S) � 2 · I

(where Cov(S) denotes the empirical covariance of samples in S), and |EX∼SX − µ| ≤ O(
√
ε).

To find the subset S (which allows us to estimate µ to within
√
ε), note that it suffices to find

some subset S of points so that Cov(S) � 2 · I. then in fact using the previous lemmas it follows
that EX∼SX − µ| ≤ O(

√
ε). The naive thing to do is to use brute force search. A second more

clever thing to do is to find a better algorithm to find T ⊂ {X1:n} with Cov(T ) � 2I and so that
|T | ≥ (1− ε)n.

We will instead take a third option which is to directly go to estimating the mean.

4.8 Proofs-to-algorithms for robust mean estimation

We will encode subsets S ⊂ [n] which have bounded empirical covariance as solutions to systems
of inequalities. We won’t solve this directly, but then will look at SoS.

In particular: given X1, . . . , Xn ∼ε D, we define a system AX1:n(w,B) in variables w,B which
is satisfied with w equal to the 0-1 indicator vector of some subset with bounded covariance. We
will then have an algorithm which finds Ẽ satisfying Ẽ � AX1,...,Xn . Instead of trying to extract a
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subset encoded by w, we just try to find the mean: in particular, we want the empirical mean of
samples in w, which is:

Ẽ
1

(1− ε)n
∑
i∈[n]

wiXi.

We never actually round the vector w, but just output the value of the above pseudoexpectation.
Given X1:n, we said before that we will find some subset that has small empirical covariance. To

make things simpler, we actually consider a slight twist: we will findX ′1:n so that TV(X1:n, X
′
1:n) ≤ ε

(namely, the two sets X,X ′ differ by at most εn points), and so that Cov(X ′1:n) � 2I. In particular,
if X?

1:n has Cov(X?
1:n) � 2I, then the lemma we showed above gives that ‖EX ′ − EX?‖ ≤ O(

√
ε)

(here the TV statement holds since X?, X are close in TV by assumption, and X ′, X are close in
TV by construction).

We now create the following system of polynomial inequalities: AX1:n(w1:n, X
′
1:n, {Bij}i,j≤d) :

• w2
i = wi, forall i.

• wiX
′
i = wiXi for all i: in particular, for all things we include in the subset, X ′i = Xi.

•
∑n

i=1wi = (1− εn). This asks for the subset to be large.

• 1
n

∑
i(X

′
i − EiX ′i)(X ′i − EiX ′i)> = 2 · I − BB>. Here we have an equality of matrices; note

that B is a d× d matrix of variables.

The above system of polynomials describes the problem of finding a collection X ′1, . . . , X
′
n which is

close in TV to X1:n and has bounded covariance.
Goal: we want to show that

A
O(1)

‖Ei∼[n]X
′
i − Ei∼[n]X

?
i ‖4 ≤ O(ε2), (9)

assuming that Cov(X?
i ) � 2 · I. Thus, given Ẽ satisfying Ẽ � A, we can simply output ẼEi∼[n]X

′
i.

By the existencee of the SoS proof above, we know that Ẽ‖Ei∼[n]X
′
i − Ei∼[n]X

?
i ‖4 ≤ ε2. Then we

can use pseudoexpectation Cauchy-Schwarz (on HW) to get that

‖Ẽ
[
Ei∼[n]X

′
i − Ei∼[n]X

?
i

]
‖4 ≤ O(ε2),

which is what we want to show. The statement (9) is exactly the proof of the identifiability lemma
from before, explicitly proven in constant-degree SoS proofs.

Proof. Define variables v(w,B,X ′) = Ei∼[n]X
′
i − Ei∼[n]X

?
i , and zi = 1{Xi = X?

i }. Here the zi are
numbers, not variables. We now write

Ei∼[n]X
′
i −X?

i = Ei∼[n]wizi(X
′
i −X?

i ) + (1− wizi)(X ′i −X?
i ).

The idea is that wizi is the proxy for the indicator that X ′i = X?
i . By the SoS axioms, we have that

A
O(1)

Ei∼[n]wizi(X
′
i −X?

i ) + (1− wizi)(X ′i −X?
i ) = Ei∼[n]wizi(Xi −X?

i ) + (1− wizi)(X ′i −X?
i )

=0 + Ei∼[n](1− wizi)(X ′i −X?
i ).
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where we have used that wiX
′
i = wiXi by our axioms. Note that the second step follows since

zi(Xi −X?
i ) = 0. (Proving equality means proving an upper and lower bound.)

Now we have to square everything. Note that by definition of v, we have that ‖EiX ′i−EiX?
i ‖4 =

〈EiX ′i − EiX?
i , v〉2. We now get that

A 〈EiX ′i − EiX?
i , v〉2 =〈Ei(1− wizi)(X ′i −X?

i ), v〉2

=
(
Ei∼[n](1− wizi)〈X ′i −X?

i , v〉
)2

≤Ei∼[n][(1− wizi)2] · Ei∼[n][〈X ′i −X?
i , v〉2],

where the inequality is by SoS Cauchy-Schwarz.
Now we have to deal with the two terms resultin from Cauchy-Schwarz: we can prove in SoS

that:

{(w2
i = wi)} O(1)

(1− wizi) = ((1− wi)2 + w2
i (1− zi)2) ≤ (1− wi) + (1− zi).

Then, using the proof composition rules to square both sides, we get that

A
O(1)

Ei[(1− wizi)2] ≤ 2 · (Ei[(1− wi) + (1− zi)]) · Ei〈X ′i −X?
i , v〉2.

by the coupling axiom, we have A Ei(1− wi) ≤ Oε), and since the zi are just numbers, we have
that the above isupper bounded (in SoS) by O(ε) · Ei〈X ′i −X?

i , v〉2.
Now we deal with the second term:

A E〈X ′i −X?
i , v〉2 ≤O(1) ·

(
Ei〈X ′i − EX ′i, v〉2 + Ei〈X?

i − EX?
i , v〉2 + 〈v, v〉2

)
,

where we have used Young’s inequality (for SoS) above. Now, we have

Ei∼[n]〈X ′i − EX ′i, v〉2 = v>
1

n

∑
i

(X ′i − EX ′i)(X ′i − EX ′i)>v = ‖v‖2 − vBB>v>,

where the final step follows from the SoS axioms. But in SoS we have A −v>BB>v ≤ 0, and

so the above is bounded above in SoS by O(1) · (‖v‖2 + ‖v‖4). In particular, we have A ‖v‖4 ≤
O(ε) · (‖v‖2 + ‖v‖4), and rearranging, we get

A ‖v‖4 ≤ O(ε) · ‖v‖2 ≤ 1

2
‖v‖4 +O(ε2),

where the final inequality follows again by Young’s inequality (for SoS). Then rearranging again,
we get A ‖v‖4 ≤ O(ε2).

5 October 14, 2022

Today: clustering. General goal is to find some good partiion of [n] into k parts. For instance, we
have X1, . . . , Xn ∈ Rd, and want to cluster them in some way that “respects geometry”. Another
example is given a graph and want to cluster into k groups S1 ∪ · · · ∪ Sk = [n] so as to minimize
E(Si, Sj).

Today: we cluster points when given that a “good” clustering exists.
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5.1 Identifiable clustering

A clustering probelm is specified by θ = {((S1, . . . , Xk), X)}, where we receive X as input, and the
goal is to find the partition S1, . . . , Sk. Sometimes we can’t recover the partition exactly but will
consider settings where we can approximately identify the clustering S1, . . . , Sk.

To ensure identifiability, we assume:

Assumption 5.1 (Identifiability). First, we assume that |S1| = · · · = |Sk| = n/k. Further,
there exists a mapping C(X), so that for all (S1, . . . , Sk, X), letting C(X) = (T1, . . . , Tk) gives that
|Ti ∩ Si| ≥ (1− δ) · nk for all i.

Here we have defined an abstract clustering setting, so it can be specialized to any one specific
model.

Example: Gaussian mixture models. Given distributions D1, . . . , Dk on Rd, their uniform
mixture is 1

k

∑k
i=1Di: namely, first choose i ∼ [k] uniformly and then output a sample from Di. If

Di are Gaussian, then this is said to be a Gaussian mixture model.
Later in the lecture, we will consider the following problem: given X1, . . . , Xn ∼ 1

k

∑
iDi. Here

the Si is the set of Xi’s drawn from Di. The goal is to find S1, . . . , Sk given X1:n. This problem
only makes sense only when this is information-theoretically possible, so will need some separation
assumption on the Di.

5.2 Identifiable clustering via SoS

How can we prove identifiability via SoS? This will ultimately lead us to algorithms, via similar ideas
to last time when we discussed “proofs to algorithms”. Suppose that for all X, letting S1, . . . , Sk be
the ground-truth partition for X, there exists a system of polynomials PX of degree d, in variables
w1, . . . , wn, z, which identifies the clusters in the following sense: for all a 6= b ∈ [k],{

w2
i = wi,

n∑
i=1

wi = k

}
∪ PX d

∑
i∈Sa, j∈Sb

wiwj ≤ δ ·
(n
k

)2
(10)

where PX is some problem-specific set of axioms that defines “being clustered”. We also want to
ensure that for all clusters a, 1Sa solves PX . Here interpret wi as being the indicator vector for
a subset. This inequality is telling us that wi cannot have too much mass split between multiple
clusters: e.g., if it is evenly split between 2 clusters, then

∑
i∈Sa, j∈Sb wiwj = 1/4 · (n/k)2. The idea

is that most of the mass of the wi is on one cluster, and then poly(δ) is split between other clusters.
So, taken together over all a, b, the proofs say that the w vector lies mostly within one cluster.

(Recall that last time we built a polynomial system that identifies the mean of a distribution.)
We will show the below result (roughly):

Theorem 5.2 (Informal). If the above holds, then we have: in poly(nd) time, given a pseudoex-
pectation Ẽ � {w2

i = wi,
∑
wi = n/k} ∪ PX (with minimal ‖Ẽw‖22), then we can find a partition

T1, . . . , Tk so that |Sa ∩ Ta| ≥ (1− δkO(1)) · nk .
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Example of the sytem PX . Let’s consider X = X1, . . . , Xn ∈ R. Suppose each Si consists of a
disjoint interval of length 1: in particular, suppose every two intervals are separated by at least 10.

What is the system of polynomials PX(w1, . . . , wn) here? It is just looking at differences between
Xi, Xj :

PX(w1, . . . , wn) = {wiwj(Xi −Xj)
2 ≤ 1}..

(In words: whenever i, j are both in the cluster, the distance between Xi, Xj is at most 1.)
What can we prove using PX(w)? For a 6= b,

PX(w)
∑

i∈Sa,j∈Sb

wiwj ≤
1

100

∑
i∈Sa,j∈Sb

wiwj(Xi −Xj)
2,

since in SoS

wiwj = w2
iw

2
j , w2

iw
2
j ·
(

(Xi −Xj)
2

100
− 1

)
≥ 0,

since the latter expression is a square (where we use that for i, j in different clusters, (Xi−Xj)
2 ≥

100).
But in SoS we have

PX(w) (n/k)2 ·
∑

i∈Sa,j∈Sb

wiwi(Xi −Xj)
2 ≤ 1

100
(n/k)2.

We can get a better guarantee by doing repeated squaring, peeling off one copy, repeatedly. This
will raise the power of (Xi −Xj), but those are numbers (not variables), so still gets it to work i
nconstant degree.

5.3 Proving Theorem 5.2 using randomized rounding

Now we extract the clusters from a pseudoexpectation satisfying the above system, using random-
ized rounding. There are actually lots of different things that work here. This is actually quite
standard, so all the work is constructing the polynomials PX for the particular notino of clustering
you want to consider.

What does Ẽ look like? Can we use the first moments? If we get really lucky and Ẽ correpsonds
to the point mass on the indicator vector of cluster 1, Ẽq(w) = q(1S1), then we could output
Ẽw1, . . . , Ẽwn, and we’d be good. We could of course also hve Ẽq(w) = q(1S2). But consider
the “bad” pseduexpectation Ẽ′ with TE[q(w)] = 1

2 · (q(1S1) + q(1S2)). This is possible since the

class of pseudoexpectations is convex. In particular, generalizing, if the pseudoexpectation Ẽ is the
uniform distribution over cluster indicators, then Ẽ[wi] = 1/k for all i, which is useless. Thus, the
first moment is not useful to you!

Second moments. Let’s consider second moments of pseudoexpectations. Consider Ẽwiwj when
i, j are either from the same or different clusters. By (10), adding up over all k2 clusters, we have

PX
∑

i,j in different clusters

Ẽwiwj ≤ δn2.
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What about points in the same cluster? If the pseudoexpectation is of degree 2, then we have:

Ẽ

(
n∑
i=1

wi

)2

= Ẽ
∑
i,j

wiwj = (n/k)2.

Subtracting the two equations, we have

Ẽ
∑

i,j in same cluster

wiwj ≥ n2 ·
(

1

k2
− δ
)
.

5.4 A concrete rounding scheme.

Consider the following rounding scheme:

1. Pick i ∼ [n], and compute {Ẽ[wj |wi = 1]}nj=1. (Ideally, once we condition on wi = 1, the
pseudoexpectation should be 1 on the coordinates which are in the same cluster as point 1.)

2. Let T ⊂ [n] be given by including j with probability Ẽ[wj |wi = 1].

3. Remove T , and recurse k times. (In particular, condition on different variables being 1 the
next time, and so on.)

Note that one way this procedure could go wrong if you’re in the situation (which we thought would
be good) that the Ẽ is the point mass on the indicator vector of 1 cluster. In particular, in order

to condition on wi = 1, we neet Ẽ[wi] > 0, since Ẽ[p(w)|wi = 1] = Ẽ[wi·p(w)]

Ẽwi
. This is the reason we

minimize ‖Ẽw‖22. It turns out that minimality of ‖Ẽw‖22 forces Ẽwi = 1/k for all i.

So, the “ideal situation” is that Ẽ corresponds to a uniform distribution over all k clusters. Then
the matrix of Ẽ[wiwj ], for i, j ∈ [n], corresponds to a block diagonal matrix, with block diagonal
matrices all 1’s and off-diagonal matrices all 0’s.

Analyzing the above rounding scheme. Suppose that the random i ∼ [n] that we picked
satisfies i ∈ Sa. Now consider the expected value of the number of elements of T which are not in
Sa: conditioned on lying in Sa, each element of it occurs with equal probability k/n:

Ẽ
∑
b6=a
|T ∩ Sb| =

k

n

∑
i∈Sa

∑
j 6∈Sa

Ẽ[wjwi]

Ẽwi
.

Lemma 5.3. Minimality of ‖Ẽw‖22 implies that Ẽwi = 1/k for all i.

Proof. Note that the uniform distribution over clusters must be a minimizer by the constraints∑
iwi = n/k, which implies that Ẽ

∑
iwi = n/k.

(Alternatively, we can solve this algorithmically by constraining Ẽwi = 1/k for all i.)

Using the above lemma, it follows that

E
∑
b6=a
|T ∩ Sb| =

k2

n

∑
i∈Sa

∑
j 6∈Sa

Ẽwiwj ≤
k2

n
· k · δ(n/k)2 ≤ knδ,
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where the second-to-last inequality follows by each of the conclusions
∑

i∈Sa,j∈Sb wiwj ≤ δ · (n/k)2

from (10).
We also want to make sure that T is nonempty: Ẽ|T | =

∑
j Ẽ[wj |wi = 1] = n/k, where the

inequality here follows from the definition of conditional pseudoexpectation: the LHS is
∑

j
Ẽ[wjwi]

Ẽ[wi]
,

which is n/k. Thus, E|T ∩ Sa| ≥ n/k · (1− k2δ).
Now we have to put the above together to show that we get all the clusters. One way to do this

is to repeatedly choose i uniformly at random from [n] and apply coupon collector. Alternatively,
we argue as follows, where we use that we remove T in the algorithm:

Claim 5.4. It holds that P (select all clusters) ≥ 1− δkO(1).

Proof. At round t,

E [number of elements from clusters Sa chosen already remaining ] ≤ k ·
(
k2δ · n/k

)
≤ δnk3.

Thus, the probability we select a new cluster in round t is at least n−δnk3
n = 1 − δk3. Thus, the

probability that all rounds get a new cluster is at least 1− δk4.

Letting Ta be the cluster the algorithm selected when it selected cluster a, it follows that if all
rounds are “good” in the sense that each gets a new cluster,

E
∑
b 6=a
|Ta ∩ Sb| ≤ k2nδ,

so |Ta ∩ Sb| ≤ δnkO(1) for all a ∈ [k] with probability 1− δkO(1).

5.5 Finding SoS proofs of identifability

Now, for the particular case of GMMs, we will find a system of polynomials PX and prove that (10)
holds. Once we can do this, then we can (in poly(nd) time) find a pseudoexpectation satisfying the
necessary constraints and minimizing ‖Ẽw‖22 (which we have already seen how to do), and then we
can apply the randomized rounding procedure from the previous section to find the clusters.

We consider the following case for GMMs: suppose D1, . . . , Dk on Rd, Di = N (µi,Σi), where
Σi � I (i.e., the clusters themselves are not too far spread out).

We suppose that we have samples X1, . . . , Xn ∼ 1
k

∑k
i=1Di, and we assume that we get exactly

n/k samples (consisting of the cluster Si) from each Di (by concentration you get approximately
this many, but to make things simple we assume exactly n/k samples per cluster). The goal is to
find the clusters S1, . . . , Sk.

Naive approach. The naive approach is that “clusterness” property is that every in-cluster pair
is closer than every cross-cluster pair. (Where closeness means Euclidean norm.) If this holds, you
don’t even need SoS: can just do a greedy clustering approach. It turns out that this approach
works if there’s enough mean separation. Let’s write ∆ab = ‖µa − µb‖2 to denote the distance
between the means of a, b. This approach works if ∆ab � d1/4 (DasGupta, 2002).

Can we get things to work with smaller separation? What if there were 2 clusters and we knew
the means? Given X1:n, we could compute the projections〈

Xi,
µ1 − µ2

‖µ1 − µ2‖

〉
, i ∈ [n].
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These will be drawn from a mixture of 2 Gaussians in 1-dimension with unit variance and separation
‖µ1 − µ2‖2. This isn’t rigorous, even statistically (since we have assumed we know µ1 − µ2), but
it’s a hint that we can do better.

Theorem 5.5 (Regev-Vijayaraghavan, 2017). If ∆ab �
√

log k for all a, b, then using (dk)O(1)

samples, we can cluster to 0.99-accuracy (and learn the means µ1, . . . , µk).

The above result is statistical: the best known algorithm is exponential time (basically discretize
over all mean vectors, so you get exp(dk)). We actually don’t know how to improve exponential
time if we are constrained to use polynomially many samples.

Today, it is implicit that k, d are polynomially related.

Theorem 5.6. For all ε > 0, given n ≥ d(1/ε)O(1)
samples, we can cluster to 0.99 accuracy in

d(1/ε)O(1)
time if ∆ab � kε.

Remark. If you do the above argument carefully (we don’t), you can actually get dlog k samples
and time, for ∆�

√
log k. Also, a very recent paper (Li & Liu, STOC 2022) shows the following: if

the covariances are equal to identity, namely the Gaussians N (µ, I), then you can get ∆�
√

log k
in polynomial time and samples.

As we have discussed above, to prove the above theorem, thinking of ε = O(1), it is enough to
construct a system of dO(1) polynomials PX which is satisfied by the indicator vectors 1Sa , for each
cluster a, and which satisfies PX O(1)

∑
i∈Sa,j∈Sb wiwj ≤ δ · (n/k)2 for clusters a 6= b.

To come up with the polynomials PX , we ask: what does it mean to be a cluster? The insight is
that the meaning of clusterness should depend on the projections of the samples to 1-dimensional
subspaces. The following fact is good inspiration:

Fact 5.7. For any t ∈ N, if Y1, . . . , Yn ∼ N (0,Σ) with Σ � I, then with high probability, for all v,
‖v‖2 = 1,

1

n

n∑
i=1

〈Yi, v〉t ≤ O(t)t/2

if n� d.

Proof. This follows from the fact that 〈Yi, v〉 is a univariate Gaussian with variance at most 1, and
then you use the MGF of a Gaussian.

We therefore construct the following system PX(w): for all unit vectors v,

k

n

n∑
i=1

wi

〈
Xi −

k

n

n∑
j=1

wjXj , v

〉t
≤ O(t)t/2. (11)

If the wi is the indicator vector of a single Gaussian (i.e., 1 cluster) then the LHS is centering the
Xi from that cluster (using that the empirical average should be close to the true average), and
is looking at the tth moment of that cluster in the direction of v. We hope that the following are
true:

1. The above system PX is satisfied by the indicator vectors 1Si , for i ∈ [k]. Fact 5.7 verifies
this (technically we need concentration as well to ensure that the empirical error is close to
expected error).
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2. The above is satisfied by “only” 1S1 , . . . , 1Sk .

3. The previous statement has an SoS proof.

We will prove the second statement using inequalities that we’ve proven (on the HW) hold in SoS.

Of second statement above. Fix a 6= b, and t even. Let us define ∆ab = µa − µb, so that we have
the equality of polynomials∑

i∈Sa,j∈Sb

wiwj =
∑

i∈Sa,j∈Sb

wiwj ·
〈µa − µb,∆ab〉t

‖∆ab‖2t

=
∑

i∈Sa,j∈Sb

〈µa − µ(w) + µ(w)− µb,∆ab〉t

‖∆ab‖2t
,

where µ(w) = k
n

∑
iwiXi. Next, on the HW, we have shown an SoS approximate triangle inequality

for t-norms, which shows the above is upper bounded (in SoS) by:∑
i∈Sa,j∈Sb

wiwj · 2O(t) ·
(
〈µa − µ(w),∆ab〉t + 〈µ(w)− µb,∆ab〉t

‖∆ab‖2t

)
,

which is upper bounded by

n

k

∑
i∈Sa

wi · 2O(t) · 〈µa − µ(w),∆ab〉t

‖∆ab‖2t
+
n

k

∑
i∈Sb

wi · 2O(t) · 〈µb − µ(w),∆ab〉t

‖∆ab‖2t
.

Here we have bounded the summation over all j ∈ Sb for the first term by n/k, and similarly for
the second term. The above terms are symmetric, so we only bound the first. To do, so, let’s add
and subtract the ith sample for each ith term of the summation: the first term is equal to

2O(t) · n
k

∑
i∈Sa

wi ·
〈µa −Xi +Xi − µ(w),∆ab〉t

‖∆ab‖2t

≤2O(t) · n
k

∑
i∈Sa

wi ·
(
〈µa −Xi,∆ab〉t

‖∆ab‖2t
+
〈µ(w)−Xi,∆ab〉t

‖∆ab‖2t

)
where we have again used the approximate triangle inequality. The first term looks like what we
know should be bounded, so we do some rearrangements:

≤ 2O(t) · n
k

(∑
i∈Sa

〈µa −Xi,∆ab〉t

‖∆ab‖2t
+
∑
i

wi ·
〈µ(w)−Xi,∆ab〉t

‖∆ab‖2t

)
(12)

For the first term, we have used that wi ≤ 1 in SoS, and in the second term, we have added a
bunch of squares, since t is even (i.e., we are now summing over all i, not just those in Sa). By
Fact 5.7, the first term is at most 1

‖∆ab‖2t
· O(t)t/2 · ‖∆ab‖t · nk . Furthermore, by the constraints in

our polynomial system, we have that the second term is bounded by 1
‖∆ab‖2t

· O(t)t/2 · ‖∆ab‖t · nk .

Thus, the above is bounded above by

1

‖∆ab‖t
·O(t)t/2 · (n/k)2.

If the mean separation (i.e., an upper bound on ‖∆ab‖) is kε, and t � 1/ε, then the above is
≤ 1/kO(1). (We want the above to be at most δ, and we set δ = 1/k100, since we have a δ · poly(k)
probability of failure in the rounding algorithm.)
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5.6 Sum of squares, squared

One last issue: the system of polynomials PX has infinitely many constraints, i.e., we need it to
hold for all unit vectors v. We could try to discretize, but then still have exp(d) constraints, which
is too many for our algorithmic needs (running time is polynomial in number of constraints).

To solve this, we will find a new system, QX , so that QX has poly(n, d, k) polynomials in it,
and QX O(1)

PX , and QX is satisfied by the true cluster indicators 1Sa . Since QX implies PX and

PX implies SoS identifability, it follows from compositionthat QX implies SoS composability.
Let’s consider the special case t = 2: we want to prove that for all v, k

n

∑
iwi〈Xi − µ(w), v〉2 ≤

O(1). This looks a lot like saying that O(1) ·I− k
n

∑
iwi ·(Xi−µ(w))(Xi−µ(w))> � 0. This doesn’t

technically mean anything (it’s a matrix of polynomials!). But remember the way we encoded this
last week: we introduced a slack matrix of variables B = (Bij)i,j∈[d], and required that the above

matrix be equal to BB(t), namely

O(1) · I − k

n

∑
i

wi · (Xi − µ(w))(Xi − µ(w))> = BB>.

Furthermore, since the variance of a Gaussian is bounded, there is some way to set the slack variables
so as to satisfy the above. Also, it is straightforward to see that for any vector v, v>BB>v is a
sum-of-squares (in the variables B).

We can think of the matrix BB> as a “little SoS proof” that a certain SoS statement holds for
all v ∈ Rd, ‖v‖ = 1.

Generalizing to t = 4. We now generalize to t = 4. We want to prove that for all v, kn
∑

iwi〈Xi−
µ(w), v〉4 ≤ O(1). This looks like PSD-ness of

O(1) · Id2×d2 −
k

n

∑
i

wi(Xi − µ(w))⊗2
(
(Xi − µ(w))⊗2

)> � 0,

since we apply the above as a quadratic form to v ⊗ v. There’s a catch, since we need the system
to be satisfied by the ground truth clusters!

In particular, to be concrete, if Y1:m ∼ N (0, I), is it true that 1
m

∑
i(Yi⊗Yi)(Yi⊗Yi)> � O(1) ·I.

The answer is no! In directions of the form v ⊗ v, this is true; but in other directions, this can be
big! For instance, if you consider u ∈ Rd2 defined by uii = 1√

d
, uij = 0, then the quadratic form is

bigger than ‖u‖22.
The issue with the above is that we’re committing ourselves to a particular type of mini-SoS

proof (which doesn’t work). All we need is a proof that is satisfied by (1Sa , B) for each cluster a.
To get around this, we use the following fact:

Lemma 5.8. With high probability, for m � dO(1), {‖v‖2 = 1}
O(1)

v 1
m

∑
i〈Yi −

1
m

∑
j Yj , v〉4 ≤

O(1).

So, QX should be solved by (w, b), where b is a list of coefficients in the “inner” SoS proof of
Lemma 5.8. To ensure this, it is simply a system of inequalities and equalities. In more deteail,
suppose the SoS proof of Lemma 5.8 is of the following form:

O(1) · ‖v‖42 −
1

m

m∑
i=1

〈
Yi −

1

m

∑
j

Yj , v

〉4

=
L∑
`=1

p`(v)2.
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Notice that (11) is satisfied if

O(1) · ‖v‖42 −
k

n

n∑
i=1

wi

〈
Xi −

k

n

n∑
j=1

wjXj , v

〉t
=

L∑
`=1

p`(v)2 (13)

for all vectors v ∈ Rd. Then we “match up coefficients” in (13) as follows: we have variables p`,S for
each polynomial p` and each subset S ⊂ [d] of the coordinates corresponding to the term vS , and
have constraints of the form {

∑L
`=1 p`,S = q`,S(S,w)} where q`,S(Y ) is a polynomial of theXs and ws

and is the corresponding coefficient of vS on the right-hand side. Thus, the system QX has variables
(w, {p`,S}`,S). Furthermore, validity of the coefficient matching constraints {

∑L
`=1 p`,S = q`,S(S,w)}

ensures that (13) is an equality of polynomials and thus that (11) holds for all v. There’s a crucial
step remaining (which is what failed with our previous approach!): with high probability over X1:n,
does any of the cluster vectors w = 1Sa satisfy (13)? For such a setting of w, (13) reduces to
the setting of m = n/k and Yj = wφ(j)Xφj = Xφ(j), where φ(j) is the jth coordinate where w is
nonzero. Then Lemma 5.8 tells us that the equality (13) holds with high probability over the draw
of X.

Finally, we prove Lemma 5.8.

Proof. We prove the version without the empirical mean. We have:

1

m

∑
i

〈Yi, v〉4 =
1

m

∑
p,q,r,s,i

vpvqvrvs ·
∑
i

YipYiqYirYis.

With at least poly(d) samples, unless any 2 of p, q, r, s are equal,
∑

p,q,r,s YipYiqYirYis has mean 0
and concentrates to 1/ poly(d). So, the above is equal to:∑

p,q

v2
pv

2
q ·O(1) +

1

poly(d)
· (rest of terms) ≤ O(1) · ‖v‖42 +O(1) = O(1).

The idea is that using SoS proofs we can prove more than what we can do using the eigenvalue
fact that we tried for the case t = 2.

6 October 26, 2022

6.1 Tensor decomposition

We first define the tensor decomposition problem. The problem is defined as follows:

Definition 6.1 (Tensor decomposition). Given T ∈ Rnk , the goal is to find a low-rank tensor T ′

so that T ′ ≈ T , i.e., ‖T ′ − T‖ is small in some norm.
Here, by low-rank, we mean that we can write, e.g., T ′ =

∑r
i=1 ai⊗ bi⊗ ci, for ai, bi, ci ∈ Rn (in

the case that k = 3).
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Why do we care about tensor decomposition? To explain the motivation, we begin by
reviewing PCA: we’re given a dataset X1, . . . , XN ∈ Rn. The goal is to find a direction v such that
the data has large variance in the direction of v:

max
‖v‖=1

v>

(
1

N

N∑
i=1

(Xi − EjXj)(Xi − EjXj)
>

)
v = max

v

1

N

n∑
i=1

〈Xi − EjXj , v〉2. (14)

Why do we care about PCA?

• Dimension reduction (do the above problem multiple times to find the important dimensions
in a dataset).

• Denoising (throw away the noisy directions).

• Inference/model fitting.

Algorithms for PCA: the problem (14) is an eigenvalue problem, i.e., we can solve it by finding
the maximum eigenvalue/eigenvector pair for the covariance matrix. To be explicit, if we write
that matrix as Σ =

∑
i λiviv

>
i , with λ1 ≥ · · · ≥ λn, then v1 is the principle component (namely, it

solves (14), and it is also the best rank-1 approximation to the covariance. In particular, for lots
of norms (Frobenius, spectral, etc), ‖λ1v1v

>
1 − Σ‖ is smallest for v1 as the principal eigenvector,

among all rank-1 matrices.

Mixtures/non-homogeneous datasets Suppose our dataset is generated as a mixture (i.e.,
a non-homogeneous dataset). Letting the two components of the mixture have means µ1, µ2, we
might hope that µ1−µ2

‖µ1−µ2‖ is approximately the principal component of the dataset (e.g., if the two

clusters are sufficiently separated). In particular, interesting structure in a dataset is hiding in the
low-rank component.

Today, the focus is on situations where PCA doesn’t find the structure in data. There are two
such problems/situations:

• The overcompleteness problem: suppose there are many more interesting directions than
there are dimensions. For instance, if there are d2 clusters but only d dimensions. Suppose
all the means of the clusters are interesting to us. The covariance only has d eigenvectors, so
can’t hope to recover all means from it. (Besides, the low-variance directions are probably
noise.)

• The rotation problem: perhaps the high-variance directions are unique only up to a subspace
in Rn that they span. To be more precise: suppose we have n dimensions, and e1, e2 are
the first two coordinates: suppose we have two clusters along each of the e1, e2 axes. To be
precise, suppose we have the mixture distribution:

1

4
· (N (e1, I) +N (−e1, I) +N (e2, I) +N (−e2, I)) . (15)

We would hope that PCA learns the directions (e1, e2). It turns out that PCA in two di-
mensions will give us back span(e1, e2). But this doesn’t tell us the specific directions: in
particular, we could have had cluster centers at 1√

2
· (±e1±e2), which would be indistinguish-

able from a PCA perspective from the above problem.
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6.2 Moving beyond 2nd degree polynomials

So what can we do in light of the limitations of PCA? Perhaps we can hope that higher-degree
polynomials give us additional information: e.g., 1

N

∑N
i=1〈Xi − EjXj , v〉t, for some power t ∈

{3, 4, . . .}. When we do this, we end up with tensors 1
N

∑N
i=1(Xi − EjXj)

⊗t, as the polynomials in

question are 〈 1
N

∑N
i=1(Xi − EjXj)

⊗t, v⊗t〉.
Why can this solve overcompleteness? The parameter-dimensions counting argument for over-

completeness breaks down: a k-tensor has nk numbers (up a k-dependent constant for symmetry).
We can hope for a k-tensor to specify as many as nk−1 directions: since each direction is specified
by n numbers.

What about rotation invariance: Imagine the worst possible problem for rotation invariance:
suppose we have n directions, a1, . . . , an ∈ Rn, which are orthonormal and the covariance is Σ =∑

i aia
>
i . But by orthonormality, this covariance is the identity matrix In. But then for any v,∑

i〈v, ai〉2 = v>Σv = ‖v‖2, which contains no informatino about the directions ai.
What if we could understand the polynomial

∑
i〈v, ai〉3? This polynomial is maximized at

the ais. Why is that? WLOG, we can take ai = ei, and then this polynomial is
∑

i v
3
i . Next,

under the constraint ‖v‖ = 1, this is maximized at the unit vectors. To see this, note that∑
i v

3
i ≤ maxi

∑
i v

2
i = maxi vi. You can make the sum equal to 1 by choosing v = ei for some i.

And whenever it’s not a unit vector, the objective is thus strictly less than 1.

A more concrete example. As a further example, let’s remember the distribution D defined
in (15), which is a mixture of 4 standard Gaussians with means at ±e1,±e2. It has mean 0. What
is the covariance of D?2 It is:

EXX> =
1

2
(e1e

>
1 + I) +

1

2
(e2e

>
2 + I) = In +

1

2
· I2,

which picks out the span of the first two vectors but doesn’t tell us anything about the direction
there. What about the 4th moment:

E〈X, v〉4 =
1

2
E〈e1 + g, v〉4 +

1

2
E〈e2 + g, v〉4,

where we have used that g ∼ N (0, 1) above is symmetric (so the moments from the ±e1,±e2

mixtures are the same). Expanding the above, we get:

1

2

(
〈e1, v〉4 + 6〈e1, v〉2E〈g, v〉2 + E〈g, v〉4

)
+

1

2

(
〈e2, v〉4 + 6〈e2, v〉2E〈g, v〉2 + E〈g, v〉4

)
=

1

2
〈e1, v〉4 +

1

2
〈e2, v〉4 + 3 + 6 · ‖v‖2 =

1

2
〈e1, v〉4 +

1

2
〈e2, v〉4 + 9.

where we have used that E〈g, v〉2 = 1,E〈g, v〉4 = 3. The key point is that the above 4th degree
polynomial is maximized as v ∈ {e1, e2} (as we saw above for 3rd degree). So, if we could solve this
4th-degree optimization problem (or, find a low-rank approximation to the 4th moment tensor),
then we would be able to find e1, e2.

2Note that today we will assume that we draw enough samples so that the empirical covariance/moments approx-
imate the expected ones.
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A real example: independent component analysis (“blind source separation”). Let’s
move beyond toy problems. The idea here is that we have a bunch of microphones in a room with a
bunch of people talking: each microphone is picking up a different (linear) combination of a bunch
of people speaking. The problem is to figure out what each person is saying. You don’t know where
the people are, so you don’t know the particular linear combinations (if you knew them, you could
invert the linear transformation taking signals to measurements).

Assume that X is a R-valued random variable, with:

1. Coordinates of X are iid, with EXi = 0 and EX2
i = 1. Here X is the signal vector.

2. There is an unknown “mixing matrix” A ∈ Rn×n which is full-rank.

We observe AX(1), . . . , AX(N), where X(1), . . . , X(N) are independent relaizations of X. The goal
is to find A,X(1), . . . , X(N) (up to sign – note that we can’t distinguish between A and −A, since
we can also negate X).

Why is this problem even well-defined (identifiable)? The concern is: how can we tell the
difference between observing AX and AOO>X, where O is an orthogonal matrix? The point is
that we assumed the coordinates of X are independent. In order for the coordinates of O>X to be
independent, we (roughly speaking) need the distribution of X to be rotation-invariant. So, we will
need to rule out X being rotation invariant (note that a Gaussian is the canonical rotation-invariant
random variable).

So, we assume:

Assumption 6.1 (Non-gaussian). We assume that X is “noticeable” non-Gaussian, i.e., for all
i ∈ [n], EX4

i 6= 3.

It turns out that the 4th moment being 3 is more or less forced by rotation invariance. (To do
specific sample complexity analyses, we will need that the 4th moment is far from 3, but we won’t
do finite-sample analysis today.)

Let’s let the columns of A be denoted Ai, i ∈ [n]. We look at the covariance of AX:

Cov(AX) = E[AXX>A>] = AE[XX>]A> = AA> =
∑

AiA
>
i =: W,

where we have used that the covariance of X is the identity (by independence of coordinates and
unit variance of each coordinate).

It is straightforward to check that W−1/2A is an orthogonal matrix. So, we can assume that A
is an orthogonal matrix WLOG (in particular, we can compute Cov(AX) since we see samples of
AX, and thus we can compute W , and so we can take the observations AX(i) and hit them with
W−1/2, i.e., we can take W−1/2AX(i) as our data instead).

Now, we look at moments:

E(AX)⊗4 =E

(∑
i

XiAi

)⊗4

= E
∑
i,j,k,`

XiXjXkX`Ai ⊗Aj ⊗Ak ⊗A`. (16)

If i appears once in (i, j, k, `), then E[XiXjXkX`] = E[Xi] · E[XjXkX`] = 0 by independence and
mean-0 of coordinates. So, all nonzero terms must have some matching. So suppose we have
i = j 6= k = `. Then we have: E[XiXjXkX`] = E[X2

i ]E[X2
k ] = 1. Furthermore, by permutations,

we have 6 copies of this.
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Finally, if i = j = k = `, then E[XiXjXkX`] = E[X4
i ], which is not 3.

Now, we can write (16) as

E(AX)⊗4 =
∑
i,j

(Ai ⊗Ai ⊗Aj ⊗Aj +Ai ⊗Aj ⊗Ai ⊗Aj + · · · ) +
∑
i

(EX4
i − 3) ·Ai ⊗Ai ⊗Ai ⊗Ai.

Let’s write the inner product of the first term and v⊗4:〈∑
i,j

Ai ⊗Ai ⊗Aj ⊗Aj , v⊗4

〉
=
∑
i,j

〈Ai, v〉2〈Aj , v〉4 =

(∑
i

〈Ai, v〉2
)2

= ‖v‖4 = 1.

Thus, up to a constant, we get the polynomial we want, which is
∑

i〈Ai, v〉4 (up to a nonzero
constant factor out front).

6.3 Algorithms for tensor decomposition

In the worst case, finding the best low-rank approximation of a tensor, and even finding a single
vector which maximizes the cubic/quartic form, are NP-hard in the worst case. So, you need to
make assumptions: we will rephrase the problem:

Problem 6.2. Given a symmetric tensor T =
∑r

i=1 ai ⊗ ai ⊗ ai + E, find a1, . . . , ar ∈ Rn.
We make the following assumptions on a1, . . . , ar:

• a1, . . . , ar are orthonormal (this can be replaced by linear independence by using a trick which
is similar to the whitening trick);

• E = 0;

There is a very nice algorithm called Jenrich’s algorithm for the above problem:

• Sample g ∼ N (0, I).

• Let’s unfold the tensor T , and write it as a n2 × n matrix T{1,2},{3}. Then T{1,2},{3}g =∑r
i=1〈g, ai〉ai⊗ai, which we can view as the matrix

∑r
i=1〈g, ai〉aia>i . With probability 1, the

numbers 〈g, ai〉 are all distinct. By orthonormality of the vectors ai, the eigendecomposition
of this matrix gives us the vectors ai.

To deal with the case where the ai are only linearly independent (and not orthonormal): we take
a different vector g′ ∼ N (0, 1), look at the contractions with g, g′, and then match up eigenvalues.
We don’t go into details.

Jennrich’s algorithm has a few drawbacks:

• Noise robustness. Note that PCA is very robust to errors: only the smaller eigenvalues should
be affected by small noise. Unfortunately, the noise robustness of Jenrich’s algorithm isn’t
that good.

To be precise, what if E = λG, if λ ∈ R and Gijk ∼ N (0, 1). This is a generic model we
could think about with random-looking errors. How big can λ be? When we do the random
contraction, we get the matrix:

r∑
i=1

〈g, ai〉aia>i +
n∑
j=1

gjEj , (17)
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where the Ej are the n×n slices of the tensor E. Note that 〈g, ai〉 ∼ N (0, 1) since the ai are
unit norm. So, the maximum value of 〈g, ai〉 is Θ(

√
log n), which are approximate as O(1).

We might hope that
∑

j gjEj has small eigenvalues, which will let us recover the maximum
few eigenvalues/eigenvectors of the first (signal) matrix. The random matrix

∑
j gjEj is a

sum of random matrices, each of whose entries is of size roughly λ
√
n. So, by standard

matrix concentration inequalities (matrix Bernstein), we get that the max eigenvalue, namely
‖
∑

j gjEj‖ ≈ λn. So, to have any hope of Jenrich’s algorithm working here, we need λ� 1/n.

A natural question: can we beat λ ≈ 1/n? What if we could look for maxima of polynomials
of the form 〈T, v⊗3〉? In particular, we have

∑
i〈v, ai〉3 + 〈E, v⊗3〉: the first polynomial is

maximized at v ∈ {ai}i, and it has value Θ(1) there. If the second polynomial is o(1) for
‖v‖ = 1, then we’d be in good shape. So how big can we take λ to ensure that maxv〈E, v⊗3〉 ≤
o(1)? We compute:

〈E, v⊗3〉 = λ〈G, v⊗3〉.

If v is fixed, then 〈G, v⊗3〉 ∼ N (0, 1) since EG
∑

ijk(Gijkvivjvk)
2 =

∑
i,j,k v

2
i v

2
j v

2
k = ‖v‖6 = 1.

To constrain the maximum over v, we take a net over the unit sphere with 2O(n) points,
we note that Pr(〈G, v⊗3〉 � n) ≤ e−100n, and so we get maxv〈G, v⊗3〉 ≤ O(

√
n) wigh high

probability. So, we only need λ� 1/
√
n.

Some more intuition for why Jennrichs’ doesn’t work: roughly speaking, it corresponds to
upper bounding maxv〈G, v⊗3〉 ≤ max

u∈Rn,W∈Rn2 〈G, v ⊗W 〉 = σmaxG{1,2},{3}, which will be
large.

• Second drawback: Take a1, . . . , ar, for r � n, where a1, . . . , an are “generic”. It turns out
that if the ai are generic (e.g., perturbed slightly), then a1 ⊗ a1, . . . , ar ⊗ ar, r � n2 are
linearly independent. So, if we were willing to look at the 6-tensor, then we could look at:∑

i a
⊗6
i =

∑r
i=1(ai ⊗ ai)⊗3, and we are back in the setting of Jenrich’s algorithm (by “lifting

up”). The cost is you have to look at a higher-order tensor.

So, you want to look at the best possible tradeoff between the order of the tensor the number
of linearly independent vectors. In general, if r = nd, we need a 3d-order tensor. What we
can hope for is: if r = nd, then we should only need a (d+ 1)-order tensor.

We give an algorithm that addresses the noise robustness issue and also the overcompleteness one,
but only in a messy way.

In particular: the best algorithms we know: we can get r = nd and a 2d-order tensor, under
some assumptions (improving the situation here is somewhat of an open problem). The basic idea is
as follows: take a 2d-tensor and transform it into a 3d-tensor of the same vectors, and do Jenrich’s
algorithm on the “dreamed-of” 3d-tensor. This approach doesn’t use the full machinery of SoS
(just spectral approach based on eigenvalues/eigenvectors).

6.4 Improving the noise robustness

Suppose the error tensor E satisfies the following:

{‖v‖2 = 1} d 〈E, v
⊗3〉 ≤ o(1).
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When does this assumption hold? Note that

max
v
〈E, v⊗3〉 = λmax

v

∑
ijk

Gijkvivjvk,

which looks like the polynomial we discussed in the contex of refuting random CSPs. It turns
out that you can apply the same arguments (Cauchy-Schwarz, get a random matrix, apply matrix
Bernstein on that random matrix) as we used before gives that with high probability, we can get:

{‖v‖2 = 1} d 〈E, v
⊗3〉 ≤ O(n3/4).

Thus, we can get λ � 1/n3/4 (so, we can get halfway from λ = 1/n to λ = 1/
√
n); there is some

evidence that doing better is computationally intractable (i.e., this is state-of-the-art).
The idea is to use SoS to optimize the polynomial, and then do something with the resulting

pseudo-expetation:

max
Ẽ�{‖v‖2=1}

Ẽ〈T, v⊗3〉.

What property do we want that Ẽ satisfies? We could end up with Ẽ so that Ẽp(v) = p(ai); this
might be nice, so it could help us recover ai, but not the other components (analogously to what
we had last week regarding mixture models). What we want, rather, is the uniform distribution on
{a1, . . . , an}. If we were given the third moments of this distribution, it would be equal to a very
nice tensor: Ev∼{a1,...,an}v⊗3 = 1

n

∑
i a
⊗3
i , it is the tensor we want, with no noise!

So, we will solve the above maximization problem involving the pseudoexpectation, with some
additional constraints, and thene will “round” it in a certain way using Jenrich’s algorithm. In
particular, we will solve

max
Ẽ�{‖v‖2=1}

Ẽ〈T, v⊗3〉, s.t. Ẽvv> =
I

n
, ‖Ẽv(v ⊗ v)>‖ ≤ 1

n
,

where the second term is the n2 × n flattening of Ẽv⊗3. The idea behind the constraints is as
follows: for the uniform distribution over the ai, we certainly have Eaia>i = I

n (by orthonormality),
and the final term is 1/n for the uniform distribution over the ais by orthonormality: we have
that ai and ai ⊗ ai are pairwise orthogonal for i 6= j, and in general if we have orthogonal vectors
u1, . . . , um, v1, . . . , vm, then the matrix

∑m
i=1 uiv

>
i has spectral norm bounded by 1. This also shows

the above optimization problem is feasible.
Thus the algorithm is as follows:

1. Solve for Ẽ.

2. nO(1) times, sample g ∼ N (0, I), and write Mg := Ẽ[〈g, v〉vv>] (similar to Jenrich’s but
polynomially-many times).

3. If the span of the top O(1) eigenvectors of Mg contains any a so that 〈T, a⊗3〉 ≥ 1 − o(1),
keep a (here we take a net over the subspace and do a brute-force search).

4. Discard duplicates.

To analyze this, we need to show that with decent probability, each vector ai shows up with decent
probability in the top O(1) eigenvectors of Mg. Note that this algorithm never has a false positive:
the analysis we did before shows that T is maximized at the vectors ai and nowhere else.
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6.5 Proving noise robustness for tensor decomposition theorem

We now state the guarantee for the algorithm from the previous subsection:

Theorem 6.2. The above algorithm satisfies the following: it finds b1, . . . , bm so that m ≤ n, and
for 0.99n of the ais, there exists some bj so that 〈ai, bj〉 ≥ 1− o(1).

You can actually recover everything: take the ones you recovered and subtract them off from
the input tensor. By orthonormality, it suffices to assume that ai = ei, so that 〈ai, v〉 = vi for each
i.

Lemma 6.3. For 0.99 of the i’s:

1. Ẽv3
i ≥

1−o(1)
n . (i.e., the “spreading out” idea worked, since we put mass on many of the v3

i )

2. It holds that ‖ẼXiXX
>‖2F ≤ O(1/n2).

Proof. We prove the first statement first. We compute Ẽ
(∑

i v
⊗3
i + 〈v⊗3

i , E〉
)
≥ 1 − o(1) since we

can take the pseudoexpectation to be the uniform distribution over the ai, which will make this
1− o(1) (assuming appropriate bound on E). Furthermore, by the constraint, |Ẽ〈v⊗3, E〉| ≤ o(1),
which implies that Ẽ

∑
i v

3
i ≥ 1− o(1).

It remains to check that the coordinates are spread out. Sicne we can prove in SoS that
vi ≤ 1, vi ≥ −1, we have

Ẽv3
i ≤ Ẽv2

i = e>i Ẽ[vv>]ei ≤ 1/n,

since we have that Ẽ[vv>] = I/n (constraint of the pseudoexpectation). Thus, the only way we can
have Ẽ

∑
i v

3
i ≥ 1− o(1) is to have Ẽv3

i ≥ (1− o(1))/n for each i.
We prove the second statement: we use an averaging argument:∑

i

‖ẼXiXX
>‖2F =

∑
i

Tr
(
Ẽ[XiXX

>] · Ẽ[XiXX
>]
)

=
∑
i

Tr Ẽ[XiX
′
i〈X,X ′〉X(X ′)>],

which is equal to∑
i

ẼXiX
′
i〈X,X ′〉2 = Ẽ〈X,X ′〉3 = ẼX>(ẼX ′(X ′ ⊗X ′)>)(X ⊗X).

By the constraints, the matrix ẼX ′(X ′ ⊗X ′)> has singular values upper bounded by 1/n, and it
follows that the right-hand side above is:

≤ ‖ẼX ′(X ′ ⊗X ′)>‖ ≤ 1/n.

By Markov’s inequality, it follows that a 0.99 fraction of the ‖ẼXiXX
>‖2F are at most O(1/n2).

Claim 6.4. Define good i as the is satisfying the constraints of the previous lemma. Then god foor
i, with probability ≥ 1/nO(1), the algorithm finds some a so that ai ≥ 1− o(1).
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Proof. We write Mg as follows:

Ẽ〈X, g〉XX> = g1Ẽ[X1XX
>] + Ẽ〈grest, X〉XX>,

where grest is the rest of the coordinates of g. If we are lucky, g1 �
√

log n, which happens with
inverse polynomial probability. We also hope that ‖E〈grest, X〉XX>‖O(

√
log n/n).

For the first term, we hope that there are only a few eigenvalues which are 1/n, and among
those eigenvectors are the first coordinate vector (thus the algorithm will find the first coordinate
vector in its search over the top O(1) eigenvalues).

Note that the (1, 1)-entry of Ẽ[X1XX
>] is Ẽ[X3

1 ], which we know is ≥ (1−o(1))/n. Furthermore,

the Frobenius norm of Ẽ[X1XX
>] is O(1/n2), which means that there are only O(1) eigenvalues

which are� ε/n, meaning that the span of eigenvalues ≥ ε/n contains some a so that a ≥ 1−o(1).
Now let’s discuss the second term: it is

∑
i giẼ[XiXX

>]. We have a bunch of Gaussians
multiplying some fixed matrices. We will use Matrix Bernstein: what matters is the variance:∑

i>1

(ẼXiXX
>)2 ≤ 1/n2,

since we have that ‖Ẽ[X(X ⊗ X)>‖ ≤ 1/n, which implies that, by Matrix Bernstein inequality,
E‖
∑

i giẼ[XiXX
>]‖ ≤ O(

√
log n/n).

7 October 28, 2022

Today: lower bounds, Part 1. Overall idea: perhaps there is some sense in whcih SoS is “optimal”?
As a warmup, we talk about max-cut. We proved on the probelm set that: given a graph with a
(1− ε)-cut, we can find a (1−O(

√
ε))-cut. Can be rephased as follows: if the max cut of G is 1− ε,

then:
max

Ẽ of deg 2
G(x) ≤ 1− Ω(ε2).

One question is whether we can do better than this? Turns out the answere is no.

7.1 SoS lower bounds for simple instances

bounds Before stating, recall that for a n-cycle with n even, the max cut is 1, and the with n odd,
the max cut is ≤ 1− 1/n.

Theorem 7.1. Suppose we take the n-vertex cycle. Then there is a degree-2 Ẽ on the hypercube
so that Ẽ[G(x)] ≥ 1−O(1/n2).

This statement is really about the limitations of our (SoS) tools; it’s certainly not a hard
problem, and interpreting about what it means in terms of hardness of max-cut requires different
instances.

Proof. We construct the pseudoexpectation Ẽ explicitly: it is enough to specify Ẽ[x] and Ẽ[xx>].
Note that for max-cut, swapping 0 and 1 doesn’t reflect the value of Ẽ[G(x)], so we will take
Ẽ[x] = 1

2 ·1. For the second moments, let ω = 22πi/n be a primitive nth root of unity. Furthermore,
write n = 2k + 1. Next, define

u = (1, ωk, ω2,, . . . , ω(n−1)k) ∈ Cn.
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Also let v = <(u), w = =(w), so that u = v + iw. Furthermore, set X = vv> + ww>. Note that
Xii = v2

i + w2
i . Finally, let Ẽ[xx>] = 1

4 · 11> + 1
4 ·X.

Note that a rank-1 pseudoexpectation would have to be of the form xx> for a cut x, so we
would get a cut; thus, it’s a bit surprising that by going up to constant rank, we can construct this
counterexample which is tight. We have to check that Ẽ is a pseudoexpectation:

• First, we check Ẽ � {x2
i = xi}. In particular, for all polynomials p so that p(x)x2

i is of degree

at most 2, we need Ẽ[p(x)x2
i − p(x)xi] = 0. So, only need to check for constant polynomial p.

But Ẽ[x2
i ] = 1/4 + 1/4 = 1/2 = Ẽ[xi], so good.

• Next, we need to check that Ẽ[p2] ≥ 0 for all linear p. It is enough to check that (1, x)(1, x)>

is PSD. This matrix is: (
1 1/2

1/2 1
411> + 1

4X

)
=

(
B C>

C A

)
.

A block matrix of this form is PSD Iff it’s schur complement is PSD. The Schur complement
is A−CB−1C> = 1

411>+ 1
4X −

1
411> � 0. This argument should demystify the 1

411>: know
you will subtract off that from the −CB−1C> and the fact that C is a vector of 1/2-entries.

Next, we need to analyze Ẽ[G(x)] = Ẽ
∑n

i=1(xi − xi+1)2, which we compute as follows:

n∑
i=1

Ẽ[x2
i + x2

i+1 − 2xixi+1]

=
n∑
i=1

(1− 2Ẽ[xixi+1])

=
n∑
i=1

1− 2 ·
(

1

4
+

1

4
Xi,i+1

)
=
∑
i

1

2
− 1

2
Xi,i+1

=
∑
i

1

2
− 1

2
(vivi+1 + wiwi+1)

=
∑
i

1

4
((vi − vi+1)2 + (wi − wi+1)2)

=
∑
i

1

4
· |ui − ui+1|2

=
∑
i

1

4
|ωik − ω(i+1)k|2

=
1

4
· n · |1− ωk|2.

where we have used that v2
i = w2

i = 1 for all i. Note that |1−ωk| is the hypotenuse of a right triangle
with edges Θ(1/n) and 2−Θ(1/n2). The hypotenuse is

√
4−O(1/n2) +O(1/n2) ≥ 2−O(1/n2).

Thus we get Ẽ[G(x)] ≥ n · (1−O(1/n2)), as desired.
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Alternatively, we could have noted that |1 − ωk|2 = (1 − ωk)(1 − ω−k) = (2 − ωk − ω−k) =
2 · (1− cos(ωk)) = 2 · (2−Θ(1/n2)).

As an example, we can show that degree 6 SoS certifieds the bound 1− 1/n on the max-cut of
an odd cycle. Interestingly, even for degree 4 SoS, we don’t have any idea whether this 1− ε thing
is tight. It turns out that this problem is very tightly related to problems such as the unique games
conjecture.

Regarding the 0.878 GW guarantee: people thought it wasn’t tight in general, and even for
that algorithm. It took almost a decade for people to prove that 0.878 is tight for degree-2 SoS.
The graph is not the odd cycle, but is called the F.S. graph (is in the Barak-Steurer notes). This
is a very elegant construction: take the unit sphere in d dimensions. The points in the sphere
are the vertices, and there is an edge from v ∼ u if ‖v − u‖ ≤ ε. You discretize the sphere, so
take n = 2d. (Alternatively, we can even think of having an infinite edge set with infinitely many
edges and vertices.) We then use the discretized vectors to construct a PSD matrix and thus build
degree-2 pseudomoments. We also need to determine the max-cut in the graph, where we can rely
on isoperimetry. Roughly speaking a cut in the graph should have a geometric meaning (i.e., split
unit sphere in half), so the crossing edges relate to the surface area of the cut. It turns out that
this story extends beyond max-cut, and can be told for any CSP.

Interesting twist: degree-4 SoS solves the F.S. instances! It’s not clear if the F.S. instance is
hard (depends on geometry of sphere), but turns out that you can solve it using degree 4 SoS.
Nobody has any idea what hard instances for max-cut actually look like! (Note that the type of
graphs you get from NP-hardness reductions are indeed hard for max-cut, which we will discuss
later.)

7.2 SoS for NP-hard problems

We begin with the 3-XOR problem. Recall that the 3-XOR problem is defined as follows: the input
is a formula ϕ on n variables and m clauses. Each clause has the form xi ⊕ xj ⊕ xk = b for some
b ∈ {0, 1}. The MAX-3XOR problem is defined as follows: given ϕ, find x which maximizes the
number of satisfied clauses. We saw several lectures ago that you can phrase 3-XOR as a natural
polynomial optimization problem: the constraints can be rephrased as xixjxk = aijk ∈ {±1}, and
thus the max-variant is: max

∑
(i,j,k)∈Cϕ xixjxk · aijk.

How hard is MAX-3XOR: Hästad’s approximation result says it’s NP-hard to distinguish the
following two possibilites:

• “Yes” case: ϕ is (1− ε)-satisfiable.

• “No” case: ϕ is at most (1/2 + ε)-satisfiable.

Note that every 3-XOR instance is 1/2-satisfiable (take a random solution). Furthermore, detecting
full satisfiable is trivial, since you can solve a linear system over F2 with Gaussian elimination. Thus,
1-satisfiability versus anything is doable. So, the above NP-hardness result is essentially the best
you can hope for.

What should we expect SoS to do if we give it a hard instance that is at most (1/2+ε)-satisfiable?
To prove a lower bound for SoS, we want to show that SoS thinks it is very satisfiable.

Theorem 7.2. For all ε < 0 and large enough n, there is a formula ϕ on n variables so that:

51



1. ϕ is at most (1/2 + ε)-satisfiable.

2. There is a Ẽ of degree Ω(n) so that:

Ẽ � x2
i = 1, xixjxk = aijk ∀(i, j, k) ∈ ϕ.

In particular, for the Ẽ in the above theorem statement, we have Ẽ
∑

ijk∈ϕ xixjxkaijk =
∑
a2
ijk =

m.
Some philosophical points: why are we bothering to prove this lower bound? SoS hardness

is unconditional in contrast to NP-hardness. The above theorem confirms our belief. It is a bit
disappointing that SoS seems to be doing worse than Gaussian elimination, which can tell the
difference between a perfectly and non-perfectly satisfiable instance. To some extent, this violates
the belief that SoS is optimal for CSPs.

To re-establish that belief, we can try to argue that SoS is inherently “noise-robust”. If you
have a computational problem that undergoes a big qualitative change when you switch between
exact and noisy versions, then since SoS’s behavior does not change between exact and easy, you
should not expected SoS to do well on the exact version of the problem.

Also, note that the above theorem says that it is not possible to sample from a distribution
which matches, say, the first 3 moments of a pseudodistribution, the way we did for 2 moments.
(Technically, to do this, we need to show that a random 3CSP instance has small value over the
sphere, as opposed to just over the hypercube.)

To prove the above theorem, we need to introduce the following clause-variable graph: it is
bipartite with the two sides representing m clauses and n variables with and edge between a clause
and a variable if the variable belongs to the clause. 3XOR instances correspond to graphs which
are 3-left regular since each clause (on the left) has 3 neighbors.

Definition 7.1. A bipartite graph (L,R) is a (t, β)-expander if for all S ⊂ L, |S| ≤ t, |Γ(S)| ≥ β·|S|.

Here Γ(·) is the neighborhood operator. Think of t as something like 0.1n. The best β we can
hope for is 2. The easy counterexample (to getting something larger, like 3) is to take one clause,
which will have 3 neighbors, then take one neighbor and look at another clause containing it, and
that shows a set of 2 clauses with 5 neighbors, so definitely can’t hope for better than β ≥ 5/2.
Can iterate this and get all the way down to 2.

Proposition 7.3. A random bipartite 3-left regular graph with m � n is (η · n, 2 − δ)-expanding
with δ an arbitrary constant and η = ηδ > 0.

The proof of Proposition 7.3 is standard Chernoff/union, so we don’t prove it. Note that when
we were talking about some situations earlier on in the semester (e.g., structured max-cut) when
expansion made the problem easier. But here, expansion actually makes the problem harder.

Imagine we specify signs on the left-hand (clause) side uniformly at random:

Lemma 7.4. For any (L,R) with m � n/ε2 random signes aijk lead to a ≤ 1/2 + ε-satisfiable
instance ϕ.

The proof is again by Chernoff + union: for every fixed setting of the variables, that assignment
satisfies at most 1/2 + ε of the clauses with very high probability, and then do union bound over
all 2n settings of the variables.

So, we have shown: for all ε, δ there exist η, C so that for m = Cn, there exists a (ηn, 2 − δ)-
expanding ϕ which is ≤ 1/2 + ε-satisfiable.
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Lemma 7.5. If ϕ is (ηn, 1.7)-expanding, then for all aijk there exists a degree Ω(ηn) Ẽ satisfying

Ẽ � x2
i = 1, xixjxk = aijk.

We first discuss some intuition. We need to describe a procedure that generates the moments.
Note that describing the multilinear coefficients sufficient (by the multilinearity constraint x2

i = 1).
Also we only need to focus on monomials (by linearity). The interesting question is what is forced
by the constants xixjxk = aijk. Certainly we need Ẽ[xixjxk] = aijk for (i, j, k) ∈ ϕ. By multiplying

together polynomials that form constraints, we need things such as Ẽ[xixjxkxrxsxt] = aijkarst.
(Note that this corresponds to adding the linear constraints modulo 2.)

We also get things such as the following: for constraints ijk, irs, we have:

aijkairs = Ẽ[xixjxkxixrxs] = Ẽ[xjxkxrxs],

which shows a degree-4 constraint. So, constraints can collide in certain ways. The worst nightmare
is that you can collide constraints so that everybody cancels, which would yield Ẽ1 =

∏
aijk, which

won’t be true with high probability.

Proof. Here’s an algorithmic description of a procedure generating the pseudomoments:

1. Set Ẽ1 = 1.

2. For all clauses ijk ∈ ϕ, set Ẽxixjxk = aijk.

3. Repeat until impossible: choose S, T ⊂ [n] so that |S∆T | = deg{x2i=1} x
SxT ≤ ηn/10, and

ẼxS , ẼxT were previously defined. If Ẽ[xSxT ] has already been set and is not equal to Ẽ[xS ] ·
Ẽ[xT ], then FAIL.

Otherwise, set Ẽ[xSxT ]← Ẽ[xS ] · Ẽ[xT ].

4. Finally, for all S with |S| ≤ ηn/10 with ẼxS not yet defined, ẼxS ← 0. (Why do we do this?
The previous ones were forced upon us, but there is no reason to bias this in one direction or
another. E.g., for a uniform instance, if we look at the subspace of satisfying assignments,
then the uniform distribution over this subspace satisfies that each monomial is fixed or else
is uniform over {±1}.)

Lemma 7.6. If ϕ is (ηn, 1.7)-expanding, then ALG never FAILs.

We set d := ηn/10, which will be the degree that we will show our pseudoexpectation Ẽ has. We
now make the following definition:

Definition 7.2. For |S| ≤ d, define a degree-d derivation of S to be a sequence T0, . . . , Tt ⊂ [m]
so that T0 = ∅ and xS =

∏
ijk∈Tt xixjxk, and for all r ≤ t, deg{x2i=1}

∏
ijk∈Tr xixjxk ≤ d, and for

all r ≤ t, there exists a, b ≤ r so that Tr = Ta∆Tb or Tr = Ta∆{i, j, k}.
We say that an equation xS = a is d-derivable from ϕ if there exist s a degree-d derivation of S

so that
∏
{ijk}∈Tt aijk = a.

Proof of Lemma 7.6. Note that ALG only FAILs if there exists a d-derivation of xS = a and one of
xS = −a. If so, then there would be a 2d-derivation of 1 = −1 (by doing one derivation and then
doing the second derivation starting from xS = a). If we have such a derivation of 1 = −1, then
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let T1, . . . , Tt be this derivation. Then we have
∏
ijk∈Tt xixjxk = 1. Thus, the neighborhood of Tt

must tough each variable an even number of times, so each variable which is touched which must
be touched at least twice. I.e., Tt double-covers Γ(Tt). Note that there are 3|Tt| edges leaving Tt.
The number of vertices in this neighborhood is thus at most |Γ(Tt)| ≤ 3

2 · |Tt|. But we required that
the graph is expanding, which must mean that |Tt| > ηn (as otherwise the expanding condition
would tell us that |Γ(Tt)| ≥ 1.7 · |Tt| > 1.5 · |Tt|.

Our goal is to show that if we have |Tt| > ηn, then in the derivation, there must be some step
at which we are looking at too many clauses to stay below the degree bound. In particular, let r
be the smallest value so that |Tr| > 10d = ηn. Then Tr came from Ta, Tb with a, b < r, meaning
that |Tr| ≤ 20d since r is chosen as small as possible. But, by definition T0 · · ·Tt is a 2d-derivation,
so deg

∏
ijk∈Tr xixjxk ≤ 2d. So, Tr undergoes a lot of cancellation!

Recall that there are 3|Tr| edges leaving Tr, and they touch at least 1.7|Tr| vertices on the
right. Thus, they touch at least (1.7 − 1.5) · 2 · |Tr| = 0.4|Tr| vertices exactly once. Hence
deg

∏
ijk∈Tr xixjxk ≥ 0.4|Tr| ≥ 4d, using that |Tr| ≥ 10d. This contradicts the upper bound

on the degree of Tr, which has to have degree at most 2d (since it’s a 2d-derivation).

Finally, we must show that Ẽ from the above algorithm is a pseudoexpectation of degree ηn/10,
which satisfies the necessary constraints:

Lemma 7.7. Ẽ from the above algorithm is a pseudoexpectation satisfying Ẽ � {x2
i = 1, xixjxk =

aijk} of degree ηn/10.

Proof. x2
i = 1 are satisfied by construction, since we can just define Ẽ of polynomials involving

squares in the natural way.
To check that Ẽ satisfies the constraints xixjxk = aijk, we only need to check that Ẽ[xSxixjxk] =

aijk · Ẽ[xS ] for all |S| ≤ d. If the LHS is 0, then Ẽ[xS ] = 0, since otherwise we would have tried to

set the value of Ẽ[xSxixjxk]. Otherwise, the derivation worked (it didn’t fail), and we assigned the

value aijk · Ẽ[xS ] to Ẽ[xixjxk · xS ].

Positivity is the main nontrivial part here. We need to check that Ẽ[p(x)2] ≥ 0 for all polyno-
mials p. We define an equivalence relation ∼ on {S ⊂ [n], |S| ≤ d/2}, by S ∼ T if Ẽ[xSxT ] 6= 0. To
check that this is an equivalence relation:

• Reflexivity and symmetry are trivial, e.g., since Ẽ[x2S ] = 1.

• If S ∼ T, T ∼ U , then Ẽ[xSxT ] and Ẽ[xTxU ] are defined, and at some point in the procedure,
since the products xSxT , xTxU have degree at most d and their product is xSxU , which has
degree at most d, so we would have defined that accordingly (and the algorithm did not fail).

Thus, the equivalence relation ∼ partitions
( [n]
≤d/2

)
into equivalence classes C1, . . . , CN . We will use

these equivalence classes to construct an explicit diagonalization of the moment matrix. To do so,
pick representaitives S1, . . . , SN of the equivalence classes.

If S, T ∈ Ci, then Ẽ[xSxT ] = Ẽ[xSxSi ] · Ẽ[xTxSi ] (the proof of this is the same as above;
in particular, what we showed above is that the value of Ẽ[xSxT ] must be set to the value of
Ẽ[xSxSi ] · Ẽ[xTxSi ]). Let p ∈ R[x]≤d/2. We can write p = p1 + · · · + pN , where we write p in
the monomial basis, and define pi to be the sum of monomials from equivalence class Ci. Now,
note that Ẽ[pipj ] = 0 by the definition of equivalence classes (since pipj is the product of things in
different equivalence classes).
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Then Ẽp2 =
∑

i Ẽp2
i . We now write

Ẽp2
i =

∑
S,T∈Ci

p̂i(S)p̂i(T ) · Ẽ[xSxT ] =
∑

S,T∈Ci

p̂i(S)p̂i(T )Ẽ[xSxSi ]Ẽ[xTxSi ] =

∑
S∈Ci

p̂i(S) · Ẽ[xSxSi ]

2

≥ 0,

as desired.

Note that we have also shown that Ẽ[p(x)2 · qi(x)] = 0 for all constraint polynomials qi, since
we have in fact shown that Ẽ[p(x) · qi(x)] = 0 for all polynomials p (not just squares). The key is
that we have only equality constraints here.

What can we do with this? We can show that SoS doesn’t solve 3SAT by reducing 3SAT to
3XOR and using the above result, and show that the reduction is low-degree so in particular SoS
can’t do well on 3SAT.

A few weeks ago, we showed that SoS does (strongly) refute 3XOR with � n1.5 clauses. Today
we were working in the regime with roughly n clauses. Summarizing:

• With m � n, we saw today that we need degree Ω(n).

• With m � n1.5, we say a few weeks ago that SoS of degree O(1) refutes random 3XOR.

• There’s a very nice tradeoff: e.g., for m = n1.5−ε there are both upper and lower bounds: on
the lower bound side, we get a weaker expanding condition (which was the main bottleneck
in the argument today) and thus can show a degree n2ε lower bound. There’s also an upper
bound using more advanced random matrix theory.

Note that randomness is key here: there isn’t a short witness to the unsatisfiability! Turns out
that a recent paper (by Max Hopkins et al) uses HDX’s to construct an explicit instance where
there is a short witness to the unsatisfiability.

8 November 4, 2022

Today we discuss average-case hardness. The idea here is that if we think SoS is “the” best
algorithm, then by proving lower bounds for SoS on these instances, we can hope that we’re
proving lower bounds on the best algorithm. There are two types of problems for which we have
average-case hardness: (1) random CSPs, and (2) planted clique.

Two distributions that matter for us: G(n, 1/2) and G(n, 1/2) + k-clique, where the latter is
gotten by taking G(n, 1/2), picking a subset of k vertices uniformly at random, and adding all edges
between them.

A few different problems we consider:

1. Testing: given G drawn from one of the two distributions above, decide which. Note that since
the max clique in G(n, 1/2) is of size ≈ 2 log n with high probability, the two distributions
are distinguishable for k ≥ 2.01 log n.

2. Search: given G from the planted distribution, find the k-clique.
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3. Given an arbitrary graph G, output CERTIFY or “?” so that if CERTIFY, then G has no k-
clique. Moreover, PrG∼G(n,1/2)[CERTIFY given G] ≥ 1 − o(1). You can’t output CERTIFY
for every graph since there are some graphs that have k-cliques (where we can’t output
CERTIFY).

(Note that our certification algorithms for random CSPs were of this exact flavor.)

General theme here is: both search and refutation imply distinguishing algorithms. Generally,
an algorithm for one wil llead to an algorithm for all 3. But there has been some recent work where
you can separate these tasks.

There are many reductions here: given lower bounds for, e.g., the testing variant, we can often
deduce lower bounds for the other ones.

Note that the k-planted clique problem is easy for k ≈
√
n. We saw one way of showing this in

HW 1, but there’s an easier way: the typical degree of vertices in G(n, 1/2) is n/2± O(
√
n). The

degree of a vertex in the k-clique is ≥ n/2−O(
√
n) + k. So, if k �

√
n (say k �

√
n log n, to allow

for a union bound), the clique vertices are the largest degree ones (look at vertex degrees). By
considering the eigenvalues of the adjacency matrix, you can shave the

√
log n, i.e., you can solve

the distinguishing problem when k �
√
n.

Unlike in the CSP case, the brute force search algorithm is not that slow: it just looks for a clique
of size 2.01 · log n, and so, in time nO(logn), you can solve the problem for any value of k for which
distinguishability holds. So, planted clique only gives evidence of hardness in superpolynomial
time.

Given the brute force nO(logn) time algorithm, we should hope that SoS does something in
degree O(log n). It turns out that degree O(log n) SoS “solves” planted clique. It turns out that
there’s a tradeoff here (between k ∼

√
n and k ∼ log n), which we discuss later.

8.1 SoS for planted clique

We will discuss SoS algorithms for the retutation algorithm (as for CSPs). Given G, we introduce
the following system of constraints on x1, . . . , xn:

Ck =

{
x2
i = xi; xixj = 0, i 6∼ j ∈ G;

∑
i

xi = k

}
.

How can we use the SoS algorithm to refute the presence of a k-clique? We can simply look for a
degree-d SoS refutation of these. This runs in time nO(d). What low bounds can we hope for:

• For d = O(1), there is no degree d refutation of Ck with high probability (i.e., an SoS lower
bound for constant degree SoS). Here’s what’s true:

Theorem 8.1. With high probability over G ∼ G(n, 1/2) there exists a degree d Ẽ � Cn1/2−ε

for d = Ω
(
ε2 logn
log logn

)
.

If a pseudoexpectation satisfies Cn1/2−ε , then SoS refutations don’t exist by duality. Note that
a refutation of Ck will be a proof of the form:

−1 =
∑
i

pi(x) · (x2
i − xi) +

∑
i 6∼j

pijxixj + q(x) · (
∑
i

xi − k) + (SoS).
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So, if the pseudoexpectation exists, when you evaluate it on the RHS, you get something
non-negative, whereas the LHS is −1. So, we get SoS degree ≈ log n (as high as we can hope
for, up to log log n factor) and can refute planted k-clique with k ≈ n0.49.

• There are variants of the refutation that we constructed in HW 1 to show that we can refute
k =
√
n/2d in degree d.

8.2 Proving the case d = 2

We will show the following:

Theorem 8.2. With high probability over G ∼ G(n, 1/2) there exists Ẽ � {x2
i = xi, xixj = 0 for i 6∼

j}, and so that Ẽ
∑n

i=1 xi = Ω(
√
n).

Note that this statement is a bit weaker than the one above since it doesn’t have Ẽ[p(x)
∑

i xi] =

k · Ẽ[p(x)] for all p. It’s a bit different from the max-cut lower bound since: (a) we don’t have
a single graph (we are given a random graph), and (b) we won’t be able to analyze PSDness are
directly. But it is pretty explicit, unlike Grigoriev’s 3-XOR lower bound we saw last time.

We need maps from G to Ẽ[xi], Ẽ[xixj ]; the only non-multilinear polynomials we need to worry

about are Ẽ[x2
i ], which is forced to be Ẽ[xi]. There are no other non-multilinear polynomials we

have to worry about since we’re in degree 2.
Everything in the construction will be forced on us: it will depend on a certain parameter,

which is Ẽ
∑

i xi, which will lead to PSDness when this parameter is Ω(
√
n).

We are forced to choose the following: Ẽ[xixj ] = 0 for i 6∼ j. Next, we need to set Ẽ[xi] and

Ẽ[xixj ] for i ∼ j.

Note that, by SoS cauchy Schwarz, we must have Ẽ
∑

i,j xixj = Ẽ (
∑

i xi)
2 ≥

(
Ẽ
∑

i xi

)2
=

Ω(n). There are Θ(n2) terms in the summation on the LHS which are allowed to be nonzero (those
that are edges), and we want those to be on the order of 1/n on average.

We have Ẽ � 0 (i.e., Ẽ satisfies the PSD condition) if and only if Ẽ[(1, x)(1, x)>] � 0. As a rule
of thumb, increasing off-diagonal elements of a matrix makes the matrix “less PSD”. We can try
to compensate for this by increasing the elements on the diagonal. But, on the diagonal, we have
Ẽ[x2

i ] = Ẽ[xi], which we’re constrained from making too large.
Below we give nthe formal proof.

Proof. We define Ẽ[xi] = k/n for all i, and Ẽ[xixj ] = λ for i ∼ j. (By the argument above, we will
need λ ≥ k2/n2.) We have now commited to the definition (for appropriate choice of k, λ).

For k ≥ Ω(
√
n), we satisfiy Ẽ

∑
i xi = Ω(

√
n), and have satisfied the constraints x2

i = xi and
xixj = 0, i 6∼ j, by definition. It only remains to check the PSDness condition. What does the

matrix Ẽ[(1, x)(1, x)>] look like?(
1 k/n · 1>

k/n · 1 (k/n− λ) · I + λAG

)
,

where we have defined AG to have 1’s on the diagonal, i.e., (AG)ii = 1. In particular, the matrix
in lower right-hand corner has k/n on diagonal and λ ·AG off-diagonal.
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Let J denote the all-1s matrix. Recall that AG = 1
2J + ĀG, where ‖ĀG‖σ ≤ O(

√
n) whp. We

take this as a given for now; you can prove this up to a log factor using matrix Bernstein, and
discuss an approach to remove the log later. We now have that(

1 k/n · 1>
k/n · 1 (k/n− λ) · I + λAG

)
�
(

1 kn · 1>
k/n · 1 (k/n−O(λ

√
n)I) + λ/2 · J

)
,

since O(λ
√
n) · I + λĀG � 0, as all eigenvalues of λĀG are at least −λ

√
n. This is where we use

the high-probability statement (namely, the spectral bound).

Recall that a block matrix

(
C B>

B A

)
� 0 iff and only if A − BC−1B> � 0, which we can

compute as follows:

(k/n−O(λ
√
n)) · I + λ/2 · J − (k/n)2J.

Here is where the constraint λ ≥ (k/n)2 shows up! In particular, we need λ/2 > (k/n)2 to make
the coefficient on J positive. Furthermore, to make the coefficient on the identity matrix positive,
we need k/n� λ

√
n.

We want to maximize k so that there exists λ satisfying these. In particular, we want k/(n
√
n)�

λ � (k/n)2, i.e., we need k/(n
√
n) � (k/n)2, and this holds as long as k �

√
n. So, choosing

k = c ·
√
n for sufficiently small k means that the pseudoexpectation will be PSD, as we wanted to

show.

8.3 Lower bounds for degree 4

Things get trickier for degree 4. One issue comes from matrix concentration inequalities: we could
use matrix Bernstein to analyze the eigenvalues of the adjacency matrix. What happens in degree
4? Let’s look at the

(
n
2

)
×
(
n
2

)
moment matrix:0 1 2

1 2 3
2 3 4

 ,

where we have shown degrees above. Suppose that (i, j, k, `) is not a clique in G, e.g., since
(k, `) 6∈ E(G). Then Ẽ[xixjxkx`] must be 0 by our constraints. So, Ẽ[xixjxkx`] is nonzero only if
(i, j, k, `) is a clique in G. So, the indicator matrix of 4-cliques matters; in particular, the spectrum
of that matrix matters.

Unfortunately, unlike for the adjacency matrix, that matrix is not a nice sum of independent
random matrices (as we had for the adjacency matrix, which is a sum of symmetrix matrices, one
for each edge). In particular, the element of the “4-clique” matrix corresponding to (ij, k`) looks
at, e.g., the edge (i, j). So, we begin with a quick aside, namelt the trace method to bound the
spectrum of random matrices.

Trace method. Let’s start with the moment method. Given a scalar r.v. X, and we can bound
E[Xk], then we can use these moments for concentration: in particular, Pr(X > t) = Pr(Xk >
tk) ≤ E[Xk]/tk. All of Bernstein, Chernoff bounds, etc., are just using the moment method here
(they are using exponential moments with the right coefficient λ in the exponent).
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The trace method is a variant of the moment method for random matrices. Suppose M is a
random matrix. Note that E[‖M‖] is already an interesting statement: it’s the expectation of a
max over eigenvalues, and so it’s saying we can do some sort of union bound over the eigenvalues.
We need the following inequalities to do the trace moment method: if M is a symmetrix random
matrix,

E‖M‖ ≤
(
Eλ2k

max

)1/(2k)
≤
(
E[Tr(M2k)]

)1/(2k)
,

where the first inequality is Jensen and the second inequality follows from adding in the other
eigenvalues. (This isn’t so bad, since at most we lose a factor of n1/(2k), since we lose a factor of n
in passing from max eigenvalue fo trace.) In particular, if we take k = log n, we only lose a constant
factor. We can actually establish sharp constants by taking k ∝ 1/ε for small ε. The cost of taking
k larger is that Tr(M2k) is a large polynomial, and thus is harder to evaluate. Let’s first use this
method to reprove the upper bound on the spectrum of a random matrix with independent entries.

Proposition 8.3. Let M be a random matrix with independent random entries Mij = {±1}, and
which is symmetric (i.e., Mij = Mji). Then E‖M‖σ ≤ O(

√
n log n).

To get some intuition, consider the case k = 1:

ETr(M2) =
∑
i

∑
j

E[MijMji] =
∑
ij

E[M2
ij ] = n2,

which tells us that E‖M‖σ ≤ n. Now let’s consider k = 2, recalling that the trace of a matrix
power is the sum over all closed walks on the vertices:

ETr(M4) =
∑
i,j,k,`

E[MijMjkMk`M`i].

Any term which has i, j, k, ` all distinct will be 0. There are n4 terms, but for the remaining terms
(i.e., those with a repeated index), there are at most n3 of them. An example of a walk with 3
distinct indices is i → j → k → j → i. Here the monomial is M2

ijM
2
jk, which has expectation 1.

Thus, E[Tr(M4)] = O(n3), meaning that E‖M‖ ≤ n3/4. Now we do the general case:

Proof of Proposition 8.3. We compute

E[Tr(M2k)] =
∑

i1,...,i2k

E
∏
j

Mij ,ij+1 ,

meaning that we have to consider labelings of the 2k-cycle. We care about labelings that double-
cover all edges. (In particular, if an edge appears an odd number of times, then the expectation of
the monomial will be 0.)

If we don’t care about the log factor, the following claim will suffice:

Claim 8.4. Any double-covering labeling has at most k + 1 distinct labels.

Proof. Take the labeling, and identify vertices with the same label. In the collapsed graph, there are
at most k edges (since each edge was double covered), and this graph is connected (since collapsing
can’t disconnect it). Any connected graph with k edges can have at most k + 1 vertices.
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Now let’s walk around a cycle with k + 1 distinct labels and countthe number of ways we can
do this: k + 1 times, we can name a new vertex, for nk+1 total possibilities. The remaining times,
we have to name a vertex we’ve already encountered, for ≤ (2k)k−1 possibilities (this term can
actually be improved if you want to get rid of the log). Further, there should be a term which is
22k which tells us whether or not each new vertex is a fresh vertex. Thus,

E‖M‖ ≤ (22k · nk+1(2k)k−1)1/(2k) ≤
√
n · n1/(2k) · (2k)1/2.

Choosing k = 2 log n gives
√
n log n.

Now let C4 be the n2 × n2 matrix where Cij,k` is 1 if ijk` is a clique in G, and 0 otherwise. It
is useful to center this matrix first: to do so, we note that

EGCij,k` = 2−6,

since there are
(

4
2

)
= 6 independent edges here. Thus, we define C̄4 = C4 − E[C4] = C4 − 2−6 · J .

We now use the trace method to analyze E[‖C̄4‖]. Choosing k = 1 gives a trivial bound, which
is the side length of the matrix, namely n2 (analogous to k = 1 above, which gave us an upper
bound of n). So, we choose k = 2, which will give us some nontrivial bound (less than n2): so, we
consider:

ETr(C̄4
4 ) =

∑
i1j1,i2j2,i3j3,i4j4

E[(1{i1j1i2j2} − 2−6)(1{i2j2i3j3} − 2−6)(1{i3j3i4j4} − 2−6)(1{i4j4i1j1} − 2−6)],

where, e.g., 1{i1j1, i2j2} is the indicator that i1j1i2j2 is a clique. We just have to make sure not all
of the terms contributes something, for most terms. In particular, we have that if i1, j1, . . . , i4, j4 are
all distinct, then the expectation is 0 (since the cliques i1j1i4j4 and i2j2i3j3 have disjoint edges: we
can thus condition on all other edges, and note that these two cliques are conditionally indepenent,
so take the conditional expectation inside the product – need to do this carefully). Thus, if not all
distinct, there are at most O(n7) contributing terms. Thus, E[‖C̄4‖] ≤ O(n7/4), which beats O(n2)
(the trivial one).

Let’s go back to planted clique: we choose:

Ẽ1 = 1, Ẽ[xi] = k/n, Ẽ[xixj ] =

{
λ2 : i ∼ j
0 : else.

Ẽ[xixjxk] =

{
λ3 : ijk is triangle

0 : otherwise

Ẽ[xixjxkx`] =

{
λ4 : ijk` is 4-clique

0 : otherwise
.

The above definitions will ensure that all constraints are satisfied, so all we have to check is PSD-
ness. In particular, we want to check that the matrix Ẽ[(1, x, x⊗ x)(1, x, x⊗ x)>] is PSD.

For intuition, remember that (Ẽ
∑

i xi)
4 ≤

∑
Ẽxixjxkx` means that the latter term has to be at

least (k/n)4. We won’t verify PSD-ness in full, but we will focus on the matrix Ẽ[(x⊗ x)(x⊗ x)>].
The diagonal of this matrix has: Ẽ[x2

ix
2
j ] = Ẽ[xixj ] = λ2 if i ∼ j, else 0. This looks suspicious, but

we can be saved if the entire row + column corresponding to (i, j) is 0. But, if ij is not an edge,
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then for all k, `, ijk` is not a 4-clique, so we’re saved. Thus, we can restrict attention to the rows
and columns which are nonzero, i.e., those indexed by (i, j) ∈ E(G). Let’s decompose this matrix:
it is

λ2 · I + λ3C3 + λ4C4,

where C3 is a sparse matrix which indicates that i, j, k, ` is a 3-clique (so in particular, one of
i, j, k, ` must repeat). We do the centering trick, rewriting the above as:

λ2I + λ3C3 + λ4 · (2−6J) + λ4C̄4 � (λ2 −O(λ4n
7/4)) · I + λ3C3,

where we have used that E‖C̄4‖ ≤ O(λ4n
7/4) and dropped the λ4 · 2−6 · J . Now what does C3 lok

like? It is indexed by indices like (ij, jk); for each repeated index j, there are n×n blocks (modulo
overlaps between the blocks). The individual blocks are roughly n × n random matrices and are
close to having independent random entries. Then if we center C3, we get that the individual
entries of the centered matrix have trace norm ≤ O(

√
n).

Thus, λ3C3 = PSD + C̄3, with ‖C̄3‖ ≤ O(
√
n), meaning that the above display is:

�
(
λ2 −O(λ4n

7/4)−O(λ3

√
n)
)
· I.

Remember that λs ≈ (k/n)s is forced on us, by the fact that we will have Ẽ[
∑

i xi] = k/n and the
PSD constraints involving the degree-1 polynomials. Thus, to ensure thatthe above is PSD, we
need:

k2/n2 � k4/n4 · n7/4, k2/n2 � k3/n3 ·
√
n.

Claim that if we can choose k to satisfy the above, then can choose λ to make the moment matrix
block PSD, and then use a Schur complement argument to make the whole thing PSD. To satisfy
the above it suffices to choose k � n1/8. (This can actually be tightened.) This is true even though
the largest clique in G(n, 1/2) has size O(log n).

8.4 Improving the bounds

Interestingly, this construction actually breaks for larger k: it doesn’t work to give lower bounds
up to k =

√
n. There was a paper that was put out in 2013 to give a tight k =

√
n lower bound for

SoS for planted clique; people thought the problem was solved (wasn’t that surprising since there
were some Sherali-Adams lower bounds). That paper was flawed because of a subtle error in the
random matrix theory.

Kelner’s counterexample shows that the naive construction we presented above is not PSD for
SoS degree 6 and k = n1/3. We only proved the thing for degree 4 and k � n1/8 – turns out that
the technique can be pushed up to n1/3, but we won’t go into that.

Let

ri(x) :=

n∑
j=1

(1{i ∼ j} − 1

2
) · xj .

Let rij = 1{i ∼ j}− 1
2 . Thinking of the xj as clique indicators, this is a centered count of the number

of clique elements adjacent to i. Let P (x) =
∑

i ri(x). Suppose Ẽ satisfies all the constraints. Then

ẼP (x) = Ẽ
∑
i

ri(x)4 ≥ Ẽ
∑
i

x2
i ri(x)4 = Ẽ

∑
i

xiri(x)4 =
∑
i

∑
j,k,`,s

rijrikri`risẼ[xixjxkx`xs].
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In order for the pseudoexpectation to be nonzero, we need ijk`s to be a 4-clique, but then each
rij , . . . , ris = 1/2 (i.e., is positive). Thus, the above is equal to:

∑
i,j,k,`,s

2−4 · Ẽ[xixjxkx`xs] = 2−4 · Ẽ

(∑
i

xi

)5

≥ Ω(k5),

where the last step uses Cauchy-Schwarz for SoS.
But, the naive pseudoexpectation won’t satisfy the above: it assigns O((k/n)s) to monomials

of size s which are cliques. In particular, for a fixed i, we have

Ẽri(x)4 =
∑
jk`s

rijrikri`risẼ[xjxkx`xs].

Note that the randomness in ij, ik, i`, is is independent of the randomness in the 4-clique jk`s.
There are O(n4) terms with 4 distinct indices j, k, `, s and O(n3) terms with 3 distinct indices,

all of which contribute 0 in expectation to the above.
If there are only two distinct indices, then we have n2 terms in total, which contribute in total

(k2/n2) · n2 = k2. If there’s only 1 distinct term, you get contribution on the order of k.
Thus, EGẼ

∑
i ri(x) ≤ nk2. But we showed before that WHP, Ẽ(

∑
i xi)

5 ≥ Ω(k5), so we need
nk2 > k5, i.e., only if k < n1/3.

What went wrong? Ẽ[xjxkx`xs] didn’t know about the randomness in edges connecting these
vertices to i.

To understand this, it helps to think about what happened: there was some p(G, x) so that

Ẽnaive,G[p(G, x)] 6= E(x,G)∼planted[p(G, x)]. (18)

In particular, the latter one was roughly k5; there was an SoS proof of C6 p(G, x) ≥ Ω(E(x,G)∼planted[p(G, x)]).
The main point is to construct a polynomial p(G, x) where (18) can never happen (namely, we

have equality), and pray that the pseudoexpectation is PSD. We don’t have general techniques for
showing this, but it’s very technical for cases we do, e.g., planted clique.

To define a PE, we need to defien a mapping from graphs to PEs. In particular, for each S, we
have Ẽ[xS ] : G → R; we will write ẼG[xS ] to denote this pseudoexpectation. This has a Fourier

expansion, and can be written as ẼG[xS ] =
∑

β⊂(n2)
̂̃ExS(β) · χβ(G). So we need to figure out how

to set the fourier coefficients
̂̃ExS(β).

Fixing β, if we take p(G, x) = xS ·χβ(G), then (18) tells us that ẼG[p(G, x)] = ẼG[xS ·χβ(G)] =
E(x,G)∼planted[x

S · χβ(G)]. Then it follows that

̂̃E[xS ](β) = EG∼Unif [χβ(G)·ẼG[xS ]] = EG∼Unif [E(x,G′)∼planted[x
S ·χβ(G′)]] = E(x,G)∼planted[x

S ·χβ(G)].

Thus, we set the Fourier coefficients of low degree terms to get what they need to be, and then
we define some truncated level. This will ensure that (18) never happens (i.e., we have equality
there). You can also check that clique constraints are satisfied. It’s very nontrivial to prove it’s
PSD. There’s a heuristic: it only makes sense to chop off a Fourier series if its higher order terms
are small; so, the pseudocalibration thing should work if the Fourier series has good tail decay.

For all SoS lower bounds we know (e.g., Grigoriev’s one), they can be recovered as an instance
of this with exactly the sort of tail decay of the Fourier series that you want.
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Pseudocalibration is a general way of taking a planted distribution and constructing PE’s;
moreover, it indicates that Fourier decay corresponding to a planted distribution corresponds to
whether this works.

9 November 18, 2022

Idea today and next lecture: can we match the provable guarantees of SoS but avoid black-box
appeal to SDP solvers, and in particular get nearly-linear running time? Can’t get these results
generically, i.e., have to use much more problem-specific analysis.

9.1 Planted sparse vector

Definition 9.1 (Sparse vector in a subspace). Given as input a subset V ⊂ Rn of dimension d < n,
the goal is to find a k-sparse vector in V , or decide that none exists.

Why do we care about this problem? If you’re doing regression, a regression vector with few
coordinates means that you’re explaining the labels with only a few coordinates of the feature
vector. Another problem is the small-set expansion problem in graphs: given a graph, you want to
find a set of vertices of small size so that most of the edges touching that set stays inside the set,
or to certify that no such set exists. This latter problem can be transformed into the sparse-vector
problem since a set that expands poorly translates into a sparse vector that lies in the span of the
top eigenvectors of the adjacency matrix of the graph.

Now we describe the planted sparse vector problem: we describe two distributions over instances
of the sparse vector problem.

Definition 9.2 (Planted sparse vector). In one instance, we assume we’re given a matrix P ∈ Rn×d
whose individual entries are iid N (0, 1) (thus its columns give a random d-dimensional subspace
by rotational invariance).

In the other instance, we take a matrix Q = Q̃ ·O where O is a random orthogonal matrix and
all columns of Q̃ ∈ Rn×d are N (0, 1) except the first column, for which every entry is: ±

√
n/k with

probability k/n, and 0 with probability 1− k/n. (Note that E[Q̃2
11] = k/n · n/k = 1.)

Goals that we associate to an average-case problem:

• Distinguish between P,Q.

• Search: given a sample from Q, find a sparse vector.

• Refute: given a sample from P , find a certificate that it has no sparse vectors.

One thing we have to check that is P has no sparse vectors (e.g., if d = n and P describes all
of Rn, then it has sparse vectors). We will think of k ≈ εn, where ε > 0 is a small constant. Turns
out that as long as d = Ω(n), it holds that P contains no k-sparse vector with high probability.
(You can verify by using an ε-net.)

As k gets larger, this problem gets harder. Further, as d gets larger, the problem gets harder.
We will solve this problem with k = εn, and d ≈

√
n; first with a SoS algorithm, then with

a spectral algorithm. There is actually an algorithmic technique (not based on SoS, but rather
LLL lattice algorithm) which solves this problem for larger values of d. It is believed that SoS
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algorithms don’t match these guarantees – does this challenge the conjectured supremacy of SoS?
The explanation is that those algorithms for larger d are very brittle, whereas the SoS algorithms we
will see today are robust: they can handle the case where the subspaceeQ only has an approximately
sparse vector. Algorithms based on algebraic techniques can’t do this.

Before giving a SoS algorithm for this problem, we need to take a detour and talk about sparsity.

9.2 Detour: sparsity

Given ‖x‖0 to denote the number of nonzero coordinates of x: this is not a continuous function of
x. The traditional way of doing this is to relax 0-sparsity to `1-sparsity, namely ‖x‖1 =

∑
i |xi|.

In particular, given a k-sparse unit vector x ∈ Rn, and all its nonzero entries are roughly equal,
then ‖x‖1 = k · 1/

√
k ≈

√
k. On the other hand, if x is dense with roughly equal entries, then

‖x‖1 ≈
√
n. It is classic to use this by minimizing `1 norm (which is a convex program, in fact a

linear program): classic applications are compressed sensing and sparse regression. Both of these
techniques boil down to solving minx:Ax=b ‖x‖1.

What we would want to do is the following: perhaps minx∈V, ‖x‖2=1 ‖x‖1; the problem here is
that V is not affine, so we need the constraint ‖x‖2 = 1, which breaks convexity. We will look at
`p norms for p > 2, e.g., p = 4. The key point is that the `4 norm is large for sparse vectors. For a
dense unit vector, we have ‖x‖44 ≈ /n2 = 1/n, and for a sparse unit vector x, we have ‖x‖44 ≈ 1/k.
The idea is to relax sparsity to this analytical notion of sparsity.

The problem we consider is the following one:

max
x
‖x‖44 s.t. ‖x‖22 = 1, V ⊥x = 0.

The constraint V ⊥x = 0 expresses the constraint that x ∈ V . This is not a convex progrma but is
a nice polynomial optimization problem.

We now do a quick change of variables: letting V ∈ Rn×d denote the matrix, we want to solve:

max ‖V y‖44, s.t. ‖y‖22 = 1.

This isn’t exactly the same problem since we aren’t insisting that ‖V y‖2 = 1 and V isn’t necessarily
an orthonormal basis (we are insisting ‖y‖2 = 1), but since V is random it is close enough to
orthonormal that this works.

Our goal is to consider an SoS relaxation and find a certifiable upper bound on the above
problem; 2 questions:

• How large is this value for V ∼ Q?

• What upper bound can SoS certify, if V ∼ P? (hopefully we can make this small since P
does not have a sparse vector).

To answer the first question, let’s choose y so that Oy = e1 ∈ Rd and ‖y‖2 = 1; let’s call it y?.
Then

E‖V y?‖44 = E‖Q̃ · e1‖44 = n · k/n · (n/k)2 = n2/k,

which is n/ε for k = εn.
Next thing we can hope is that if V ∼ P then the upper bound is certifably less than n/ε:
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Lemma 9.1. If V ∼ P and d�
√
n

logO(1) n
, then with high probability (over V ):

{‖y‖22 = 1} 4 ‖V y‖
4
4 ≤ O(n).

To prove the above lemma, we need one more lemma:

Lemma 9.2. If d�
√
n/ logO(1)(n) and a1, . . . , an ∼ N (0, Id) are random iid Gaussian vectors in

Rd, then with high probability,

0.9Ea(a⊗ a)(a⊗ a)> � 1

n

n∑
i=1

(ai ⊗ ai)(ai ⊗ ai)> � 1.1 · Ea(a⊗ a)(a⊗ a)>.

We have seen similar matrices when clustering mixture models; we weren’t that worried with how
large n had to be in order to ensure the eigenvalues of the expected moment matrix approximate
those of the empirical matrix. The idea is that if a d2-dimensional (full-rank) matrix is well-
approximated by the empirical matrix, then the number of samples certainly has to be at least
n ≥ d2; the above lemma says that this suffices, up to polylogarithmic factors.

We now prove the first lemma:

Proof. It holds that

‖V y‖44 =

n∑
i=1

〈y, ai〉4 = (y ⊗ y)>

(
n∑
i=1

(ai ⊗ ai)(ai ⊗ ai)>
)

(y ⊗ y)

=1.1n · (y ⊗ y)>E[(a⊗ a)>(a⊗ a)](y ⊗ y)− (y ⊗ y)> ·M · (y ⊗ y)

=1.1nE[〈a, y〉4]− (y ⊗ y)> ·M · (y ⊗ y)

=1.1n · 3 · ‖y‖42 − (y ⊗ y)> ·M · (y ⊗ y).

where M is a PSD matrix. The point is that (y ⊗ y)>M · (y ⊗ y) is a SoS, so we get

‖V y‖44 = 3.3n · ‖y‖42 − SoS(y) ≤4 3.3n.

Now we prove Lemma 9.2. First, let’s remind ourselves what Matrix Bernstein says: given d×d
symmetric random matrices X1, . . . , Xn with EXi = 0 and so that ‖X‖ ≤ R and ‖E

∑
iX

2
i ‖ ≤ σ2

(where ‖ · ‖ denotes spectral norm), then with high probability,∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥ ≤ O((log d) ·R+
√

log d · σ).

A few things get us in trouble: the maximum eigenvalue of (ai ⊗ ai)(ai ⊗ ai)> is pretty big. In
particular, if we look at the entries (jj, kk) of this d2 × d2 matrix, for any j, k ∈ [d], it will always
be ai(j)

2ai(k)2 ≥ 0. We could try subtracting off the mean, but that won’t be good enough, the
squares:

((ai ⊗ ai)(ai ⊗ ai)>)2 ≈ ‖ai‖4 · (ai ⊗ ai)(ai ⊗ ai)> (19)

also have some big eigenvalue in the (jj, kk) direction. The good thing for us is that the upper
bound has a large component in this “bad” direction as well. In particular, the matrix we want to
analyze has a lot of expected value and variance in these (jj, kk) directions.
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Proof of Lemma 9.2. Let M = E[(a ⊗ a)(a ⊗ a)>] and Xi = (M †)1/2 · (ai ⊗ ai). To get Xi we are
dampening the big directions of M .

Now, we have that:

E[XiX
>
i ] = E[M−1/2(ai ⊗ ai)(ai ⊗ ai)>M−1/2] = M−1/2MM−1/2 � I,

by definition of pseudoinverse.
Our strategy is to do matrix Bernstein on

∑n
i=1XiX

>
i − E[XiX

>
i ]. We need to compute the

parameters R and σ2.
We begin by bounding R: if we had ‖M−1/2‖ ≤ O(1), then we would be good. To show this,

we need to show that all nonzero eigenvalues of M are bounded away from 0. We claim that

M = 2 ·ΠSym + ΦΦ>

where Sym ⊂ Rd is defined as Sym := span{x ⊗ x : x ∈ Rd}, where Φ ∈ Rd2 is the flattening of
Φij = 0 if i 6= j and 1 if i = j.

Note that M has a kernel since for any φ ∈ Rd2 with φij = −φji is in the kernel of both ΠSym

and ΦΦ>.
We prove the above claim:

Proof. Certainly Ker(M) ⊇ Sym⊥ (since if v ∈ Sym⊥, then v>Mv = E[〈v, a ⊗ a〉2] = 0), so it is
enough to show that the quadratic form of both sides are equal for any vector u ∈ Sym ⊂ Rd2 . For
any such u, we have:

a>Mu = E〈a⊗ a, u〉2 = E[a>Ua] = E

∑
i≤d

a2
iUii

2

=
∑
i,j

E[a2
i a

2
jUiiUjj ] = (

∑
i

Uii)
2 + 2

∑
i

U2
ii.

where U is u arranged as a d× d matrix. and the third equality follows since we can rotate a into
the basis where U is diagonal, so we can assume that U is diagonal.

We claim the above is the same as the quadratic form as the matrix on the right. Since u ∈ Sym,
we have that

∑
i U

2
ii = ‖u‖2. Furthermore, (

∑
i U

2
ii) = 〈u,Φ〉2 = u>ΦΦ>u.

Since the norm of Φ is
√
d, the least eigenvalue of M is 2, meaning that ‖M−1/2‖ ≤ 1.

Now we can bound:

‖XiX
>
i − E[XiX

>
i ]‖ ≤ ‖Xi‖22 + 1 = ‖M−1/2ai ⊗ ai‖22 + 1 ≤ ‖ai‖42 + 1,

which is O(d2) with high probabiliity by concentration of Gaussians. Thus, with high probability,∑
i

XiX
>
i − E[XiX

>
i ] =

∑
i

(XiX
>
i − EXiX

(t)
i ) · 1{‖XiX

>
i − EXiX

>
i ‖ ≤ O(d2)},

meaning that we can take R = d2.
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Bounding σ2. Now we have to do the key step: bounding σ2. We bound the following, writing
X = Xi:

n · E(XiX
>
i − EXiX

>
i )2 · 1{‖ · ‖ ≤ O(d2)}

�n · (E(XX(T ))2 − (EXX>)2)

�n · E[‖X‖2 ·XX>].

We alsmot have what we want, modulo the 2-norm ‖X‖2; but since this is concentrated, we should
get what we want.

for any unit vector u ∈ Rd2 , we bound:

u>(n · E[‖X‖2XX>])u =n · E[‖X‖2〈X,u〉2]

≤n · (E‖X‖4)1/2 · (E〈X,u〉4)1/2

≤O(n) · E‖X‖2 · E〈X,u〉2

≤O(n) · d2 · 1 = O(nd2). (20)

where in the last step we have used E〈X,u〉2 ≤ 1 since E[XX>] � I and u is a unit vector, and that
E‖X‖2 ≤ O(d2) as we showed above. Above we have also used the following fact: for any polynomial
f in N variables, Eg∼N (0,I)f(g)4 ≤ 2O(deg f) · (E[f(g)2])2. (This is called (2, 4)-hypercontracitivty.)

By Matrix Bernstein, we get that

‖
∑
i

XiX
>
i − EXiX

>
i ‖ ≤ Õ

(
d2 + d

√
n
)
,

which is bounded above by 0.1n if d2 logO(1) d� n.
Finally we just have to renormalize, recalling the definition of Xi: from the above we got that:

−0.1I � 1

n

∑
i

(XiX
>
i − EXiX

>
i ) � 0.1n.

We now multiply both side of this matrix by M1/2, thus “re-expanding” the “big direction”. Using
implicitly that M1/2 ·M−1/2 is identity on a subspace containing all symmetric vectors, this gives

−0.1M1/2 · I ·M1/2 ≤ 1

n

∑
i

(ai ⊗ ai)(ai ⊗ ai)> −M1/2 · E[M−1/2(a⊗ a)(a⊗ a)>M−1/2]M1/2 � 0.1M1/2 · I ·M1/2.

Adding M to both sides gives

0.9M � 1

n

∑
i

(ai ⊗ ai)(ai ⊗ ai)> � 1.1M.

We now have a SoS algorithm to solve the decision problem. Our algorithm also solves the
refutation problem: if we can get a certified UB on the 4-norm polynomial, then it certifies there’s
no sparse vector, and the above shows that the 4-norm quantity is small with high probability over
a random subspace.
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Finally, what about the search problem: we could try to solve the problem:

max
Ẽ�‖y‖2=1

Ẽ‖V y‖44.

We don’t know how to directly read off a sparse vector from a PE satisfying the above, but instead
can do a local search procedure. But why should we expect any such PE to contain information
about the sparse coefficients? If V has an εn-sparse vector, then the above program has value much
larger than n/ε. Letting y? be the vector so that V y? is εn-sparse, we can decompose any y as
follows:

y = 〈y, y?〉y? + (y − 〈y, y?〉y?),

and using SoS triangle inequality, we have

Ẽ‖V y‖44 =Ẽ‖V 〈y, y?〉y? + V (y − 〈y, y?y?)‖44
≤Ẽ[〈y, y?〉4] · ‖V y?‖44 + Ẽ‖V (y − 〈y, y?〉y?)‖44.

We know the RHS is large (� n/ε), and the second term is ≤ O(n) since y − 〈y, y?〉y? only picks
out the dense vectors in V so the above analysis applies on the d− 1-dimensional subspace. Sicne
‖V y?‖44 is the 4-norm of a sparse vector, it follows that Ẽ〈y, y?〉4 ≥ 1− o(1).

9.3 How do we make the above algorithm fast?

How can we avoid solving a degreee-4 SD program?
Given V which is a matrix of (a1, . . . , an), one thing we can do is compute the eigenvalues of

‖M−1/2 1

n

∑
i

(ai ⊗ ai)(ai ⊗ ai)> ·M−1/2‖.

We showed above that the eigenvalues of the above are small. Now let’s hit it with y?, which gives
us that

(y? ⊗ y?)>M−1/2
∑
i

(ai ⊗ ai)(ai ⊗ ai)>M−1/2(y? ⊗ y?) ≈
∑
i

〈y?, ai〉4 � 1/ε,

where the final inequality follows since V y? is εn-sparse. Note that the first inequality is not
completely trivial: the high-level idea is that M is roughly the identity on the symmetric subspace
(can formally write down M−1/2 explicitly), and thus can push the y? ⊗ (y?)> inside the M−1/2.

So, one thing we can do is simply compute the maximum eigenvalue of the above matrix.
But how do we actually compute eigenvalues? Perhaps we can just use the power method: given

a matrix A, draw x ∼ N (0, I) and compute Ax, A2x, . . . , Alognx, and Alognx =
∑

i λ
logn
i 〈vi, x〉2,

and this will pick out the maximum eigenvalue.
This algorithm requires maintaining a vector whose dimensions are the side length of your

matrix, which is d2 for us. So, the fundamental limit for us is d2 memory, and we probably incur
a factor of n since we have n vectors ai; so, a limit seems to be nd2.

Can we get nd (which is the size of the input)?3 It turns out that if we consider the d×d matrix

A =
1

n

∑
i

(‖ai‖2 − d)aia
>
i ∈ Rd×d,

3“Does anyone else see horses, or are those just dogs?”
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then its maximum eigenvalue distinguishes the distributiosn P,Q (which is super easy), and in fact
you can recover the sparse vector from its maximum eigenvector.

Heuristically, we hope that:

M−1/2
∑
i

(ai ⊗ ai)(ai ⊗ a>i )M1/2 ≈

{
(y? ⊗ y?)(y? ⊗ y?)> + noise if V ∼ Q
noise if V ∼ P .

(21)

To make this ofrmal, we define:

Definition 9.3 (Partial trace). The partial trace is an operator Rd×d⊗Rd×d → Rd×d which simply
sums up te matrices on the diagonal.

In particular, an element of Rd×d⊗Rd⊗d is a d× d block matrix, and if its blocks are Aij , then
it returns

∑
iAii.

Then the idea is the partial trace of the planted matrix is:

TrRd(y
? ⊗ y?)(y? ⊗ y?)> =

∑
i≤d

y?(i)2 · y?(y?)> ≈ y?(y?)>.

The main thing we have to do is to check that the noise doesn’t mess us up.
Note that

TrRd
1

n

∑
i

(ai ⊗ ai)(ai ⊗ ai)> =
1

n

∑
i

‖ai‖2 · aia>i ,

which is almost the matrix A; except, we have a −d term, which essentially has the purpose of just
cancelling out the noise.

Note that we can compute λmax(A) in Õ(nd) time. This is because we can compute Ax =∑
i(‖ai‖2 − d) · ai〈ai, x〉 since each computation 〈ai, x〉 is O(d) time, and then we need to add up

n things of the form ai · wi, which takes time Õ(nd). Thus, using the power method, we can find
λmax(A) in Õ(nd) time.

So, we simply need to show that the maximum eigenvalue of A differs in the planted and random
cases. Let’s first consider the maximum eigenvalue if there’s a sparse vector. We want to use the
coefficients of the sparse vector as the test vector: by rotational invariance, we can assume y? = e1

without loss of genereality: then

E[e>1 (
∑
i

(‖ai‖2 − d)aia
>
i )e1] =

∑
i

E[(‖ai‖2 − d)ai(1)2] =
∑
j

 d∑
j=1

ai(j)
2ai(1)2 − d · ai(1)2


=n · (d− 1− d+ E[ai(1)4])

=n · (−1 + k/n · n2/k2) = n(n/k − 1) ≈ n/ε.

Note that the big matrix was solving the refutation problem: if its max eigenvalue is small, that
subspace definitely doesn’t contain a sparse vector. Here, we’ve only showed that in expectation
(and with high probability), the vector A has a large eigenvalue. But, if the max eigenvalue of this
matrix A is small, it won’t necessarily tell you that there is no sparse vector. Thus, to do refutation,
the only way we can do so is via SoS. (We can do search + decision using fast algorithms).

69



Finally, we deal with the random case: we assume that E[A] = 0 for simplicity. Then we
compute that, with high probability,∑

i

(‖ai‖2 − d)aia
>
i =

∑
i

(‖ai‖2 − d)aia
>
i · 1{‖(‖ai‖2 − d)aia

>
i ‖ ≤ Õ(d1.5)},

which ensures that R ≤ Õ(d1.5).
Now we want to bound the spectral norm of the squares:

E
∑
i

(‖ai‖2 − d)2‖ai‖2aia>i =n · E‖a‖2(‖a‖2 − d)aa>.

Thus, for any test unit vector u, we have, using Cauchy-Schwarz and (2,4)-hypercontractivity of
the Gaussian,

n · E‖a‖2(‖a‖2 − d)2〈u, a〉2

≤n(E‖a‖4)1/2(E(‖a‖2 − d)4〈u, a〉4)1/2

≤n · (E‖a‖4)1/2 · (E(‖a‖2 − d)8) · E〈u, a〉8

≤n · (E‖a‖2) · (E(‖a‖2 − d)2) · (E〈u, a〉2) ·O(1)

≤n · d · d ·O(1),

thus giving that σ2 ≤ O(nd2). Hence, whp, ‖A‖, for V ∼ P , has ‖A‖ ≤ Õ(d1.5 +
√
nd) � n/ε if

d�
√
n/ logO(1) n.

Why SoS? It gives a principled way of constructing higher-degree moment matrices that gives
us inspiration/ways to construct these d-dimensional matrices that have the desired properties.
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