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Online learning: motivation

Online learning is a fundamental model throughout learning theory;

applications in many areas, such as: @

* Sequential decision making (reinforcement learning) :m‘i

* Equilibria computation in games ) ?30

* Private learning ‘ol @
- e

* Online versions of problems in related areas (auction design, learning
of quantum states, etc.)

I The prisoner’s dilemma




Adversarial setting of online learning
* Fix set X and a hypothesis class H of hypotheses h: X — [0,1]

* Given a loss function ¢: [0,1]x[0,1] = [0,1]; i.e., (9,y) € |0,1] | This talk: focus on proper

e Over T rounds: Iearnl.ng algorithms, i.e.,
require h; € H forall t

— o

Learner suffers loss €(h,(x5), V)

Learner i Adversary
|
Chooses a (possibly random) ;
Ch , € X x[0,1
hypothesis hy: X — [0,1] \:\ ooses (¥1, 1) [0.1]
I
Learner suffers loss €(hq(x1), V1) i NOXNOX
I
|
Chooses a (possibly random) !
Ch , € X x[0,1
hypothesis h,: X — [0,1]  — 0oses (xz,)2) [0,1]
|
:
|
|
|

Goal: minimize expected regret: E[Reg;] = E [Xi—1 £(h:(xr), vi) — 11215 Y €(h(xp), vl



Lower bounds for adversarial online learning

* Suppose X = N and consider class of thresholds: hy

Hires = {x » I|x < w]:w € N}
* (Unfortunate) fact: for any learner, adversary can ha

choose examples (x;, y;) so that E|Reg,| > T/2 h,

1 2

 Standard “fix”: in case of thresholds, truncateto X = {1, 2, ..., d}
* In online adversarial setting: can show [E|Reg;| < 0(\/T -logd)

 Contrast with “offline (i.e., statistical) setting”: (x;, y¢) ~ pi.i.d. for
some distribution u; for thresholds:

* Then can get error rates scaling as O(+/T) — no dependence on d!

. |lorr o, or



Minimax rates for binary classes

* Generalizing from thresholds: consider a class H of binary
hypotheses, i.e., h : X — {0,1}

KTheorem [BPS,09], [ABDMNY, 21]: The optimal online learning regret\

bound for any learner against an adversary is
- E[Reg;] = O(y/Ldim(H) - T) )

* Ldim(H) is Littlestone dimension of the class H (won’t define here)
* Contrast with the offline (statistical) setting, where statistical rates scale
with VC dimension of H
* In general, Ldim(H) = VCdim(H):
* E.g., for thresholdson {1, 2, ...,d}: Ldim = logd,VCdim = 1




Minimax rates for general classes

* Consider a class H of real-valued hypotheses, i.e., h : X = [0,1]

s A
Theorem [BDR, 21]: Under mild assumptions, the optimal online learning

regret in the real-valued case is E[Reg,] = O(VT - fol \/Sfata(H) da)

-

e sfat,(H) is sequential fat-shattering dimension at scale a of the class H

(won’t define here)
* Contrast with the offline (statistical) setting, where statistical rates scale
with fat-shattering dimension at scale a (denoted fat,) of H
* In general, sfat,(H) = fat,(H):
* E.g., for thresholdson {1, 2, ...,d}: sfat,(H) = logd, fat,(H) = 1 for
alla € (0,1)



Beyond worst-case adversaries

a N
Question [RST'11], [HRS'20], [HRS'21]: Can we avoid any dependence

on Littlestone dimension (in binary case) by placing some assumption

on the adversary?
- /

* The “most mild” type of adversary is i.i.d. adversary: (x;, y;) ~ u for some
fixed & known u

* Under such i.i.d. adversary: for binary classes, optimal regret is
0(/VCdim(H) - T)
* So: under appropriate assumptions, want regret scaling with VC dimension!

More generally: for real-valued classes, want to avoid dependence on sequential
fat-shattering dimension, and just get scaling with fat-shattering dimension.




Smoothed adversarial setting of online learning

* Fix set X, hypothesis class H of hypotheses h: X — [0,1], loss £(9,y) € [0,1]
* Fix a (known) distribution 1 on X: only assume that we can sample from u

Definition [HRS’20], [HRS’21]: Given ,u € A(X) and o € (0,1], define :
SMOOTH, (1) = (P € A(X):22 <= forall E X}
\_ u(E ) )

Learner

Adversary

Chooses p; € SMOOTH,, (1),
draws x; ~ pq, V4 adversarially

NOXNOX

Chooses a (possibly random)

hypothesis h;: X — {0,1} T

Learner suffers loss €(h,(x1), V1)

Chooses a (possibly random)

hypothesis h,: X — {0,1} T

Learner suffers loss €(h,(x5), V>)

Chooses p, € SMOOTH, (),
draws x, ~ p,, v, adversarially

NOXNOX



Overview of our contributions

1. Tight regret upper bound of learning a real-valued class in
smoothed online setting
e Extends result of [HRS, ‘21] treating binary-valued setting

2. Oracle-efficient upper bound for learning a real-valued class in
smoothed online setting
* Dependence on smoothness parameter o is exponentially worse than above
upper bound.

3. Lower bound showing that regret of oracle-efficient algorithm
cannot be significantly improved
* Establishes computational-statistical gap for smoothed online learning



Review: VC dimension, fat-shatteri

[0,1]

ng dimension

=] =1 -
» Recall: given set X and class H of hypothesesh : X » | Le €a =1
@ he(xz)
* Say H is shattered by points x4, ..., x4 € X at scale « if S2 —
there are s4, ..., s; € [0,1] so that for any choice of e h() . © he(xa)
e =(€q,..,64)% € {—1,1}4, thereis h, € H so that
a X, X x
Vi€ [d]' € (he(xl) — Si) > E ¢
-

-

largest number of points H can shatter at scale «.
N

Definition (fat-shattering dimension): For a € [0,1], fat,(H) is the

* VC dimension defined as: VC(H) = lirr(l) fat, (H)
a—

* Note: if H is binary-valued, fat,,(H) = fat,,(H) forall o, ' € (0,1)
e Fact: aclass H is learnable in i.i.d. setting iff fat ., (H) < oo for all «



Learner Adversary

Chooses h; € H Chooses p; € SMOOTH, (w),
draws x; ~ p;, y; adversarially

Minimax regret for online smoothed learning

* Prior work [HRS, ‘21] for binary classes H:
E[Reg;] < +/T - VCdim(H) - log(1/0)
* Above is (nearly) tight [HRS, 21]

G’heorem [ours]: Fix some p < 2. Consider any real-valued class H so\
thatfat,(H) < d - aP forall @ > 0. Then there is some algorithm
with:

N E[Reg,] S VTd -log(1/0) y

* Note: we get rates for p > 2 as well: scaling with T is T1~1/P
(optimal rate even in adversarial setting)



Learner Adversary

Chooses h; € H Chooses p; € SMOOTH,, (u),
draws x; ~ p;, y; adversarially

Proof overview

/Lemma 1 (coupling; slight generalization of [HRS,’21]; informal): \
Fix T, k € N. For any adaptive g-smooth adversary producing x; ~
p;, there is a coupling between (x4, ..., x;) and random variables

7! € X, t € [T],j € [k] so that:
1. Marginal of (x4, ..., x7) is according to the smooth adversary;

2. Marginal of {Zg} is i.i.d. from y;
Q With probability 1 — T (1 — 0)*, x, € {Z}, ..., Z[} for all ¢t J

* Take k ~ log(T) /o to make failure probability in last line negligible.
* High level takeaway: “effectively reduce” domainsizetoT - k ~ T /o



Learner Adversary
Chooses h; € H Chooses p; € SMOOTH, (w),

Proof overview, cont. craws x; ~ p;, , adversarilly

/Lemma 1 (coupling; slight generalization of [HRS,’21]; informal): There is a coupling between \

(x1, ..., xr) and random variables Z/ € X, t € [T],j € [k] so that:
1. Marginal of (x4, ..., x7) is according to the smooth adversary;

2. Marginal of Zt] isi.i.d. from u;
\3. With probability 1 — T (1 — o), x, € {Z}, ..., Z} forall t Yy,

/I.emma 2: There are constants ¢, C > 0 so that for any function class H on A
X, we have

sfat,(H) < fat,.,(H) - log'-®! ¢ 141
N R 5 fat.,(H) - « Y

* Lemma 1 implies domain is “effectively” small;
* Lemma 2 implies that online learning is no harder than offline learning when
domain is small



Overview of our contributions

2. Oracle-efficient upper bound for learning a real-valued class in
smoothed online setting

* Dependence on smoothness parameter o is exponentially worse than above
upper bound.



Oracle-efficiency in online learning

e Standard way of getting explicit online learning algorithms: construct an
e-cover of H, use Hedge on the cover

* Issue: cover is exponentially large (e.g., in VCdim), so inefficient!

* Our approach: assume access to an empirical risk minimization oracle:

ﬁefinition (ERM oracle): An ERM oracle takes as input: \
* Sequence (xq, V1), ..., (X, Vi) € X x|0,1] of data points
* Sequence wq, ..., W, € R of weights
* Sequence?q,...,%.,:10,1]x|0,1] — [0,1] of (convex) loss functions;
ERM oracle outputs

m
h = argming ¢y Z w; - €;(h(x;), v;)
\ =1 j




Oracle-efficient algorithms: prior work

* Generic way of using ERM oracle: follow-the-perturbed-leader (FTPL)
[KV,05], [Hannan,'57]

* At each round t, given past sequence (xq1, 1), ..., (X¢—1, Y¢—1) choose

t—1 Noise process

o i (random mapping

ht = dl'gMINpeqy E f(h(xs)’ yS) T w(h) from hypotheses to
s=1

reals)

* Originally [KV,05]: w(h) are independent for each h (inefficient!)
* Follow-ups (e.g., [DHLSSV, 17]): efficient algs. for special cases

 Lower bound in general [HK,16]: need computation 2(./ |H|) for
worst-case adversary (even with ERM oracle)



Learner Adversary

Chooses p; € SMOOTH, (u),
draws x; ~ p;, y; adversarially

Using smoothness to get

Chooses hy € H

oracle efficiency

* Fix hyperparameters n,n

* Learner’s procedure at each round t:

1. Draw Z4,...,Z,, ~ ui.i.d
2. Draw y4, ..., ¥n ~ N(0,1) i.i.d. standard Gaussians

3. Choose h; := argmingey Y.c21 €(h(xg),ys) + 1 - X, vi - h(Z))
l ]

w(h)

4 N
Theorem [ours]: Fix some p < 2. Consider any real-valued class H so
that fat,(H) < a~P for all @ > 0. Then above algorithm has

E[Regr] S T?/3 . g~1/3
N Y




Further results for our FTPL algorithm

Theorem [ours]: Fix some p < 2. Consider any real-valued class H so\

that fat,(H) < a7 P for all « > 0. Then our algorithm has
L E[Reg,] S T?/3.071/3
1

: 1-
* Note: Forp > 2, we get regret scalingas T 3(®-1)
* Get optimal VT scaling for binary classes:

J

‘Theorem [ours]: Consider any binary-valued class H. Then above A
algorithm has

L E[Reg;] S /T - VCdim(H)/o y

« Comparison with [HHSY, ‘22]: they get better smoothness scaling (6 ~1/# as opposed

to our o~ 1/2) for binary classes, but don’t get any rates for nonparametric real-
valued classes (i.e., when fat,(H) > log1/a)



Proof overview

Learner

Chooses hy € H

Adversary

Chooses p; € SMOOTH, (u),
draws x;

~ D¢, Ve adversarially

* Step 1: use standard technique to reduce to non-adaptive adversary:

i.e., adversary chooses sequence (x4, V1), ...,

algorithm’s predictions
* p; still has to satisfy smoothness
* Why do this? Can use a single draw of random process w(-) for all t

 Step 2: apply ”Be the leader” lemma to get:

E[Regr] < E

\

Zf(ht(xt) Ve) — €(hey1(xe), Yt)

)

Y
Stability term

(x7, y7) without seeing

+ Complexity(H)

Bound stability term by showing an

Pl A

upper bound on

— heqll, < aj, foralla >0




Overview of our contributions

3. Lower bound showing that regret of oracle-efficient algorithm
cannot be significantly improved

* Establishes computational-statistical gap for smoothed online learning



Learner

Statistical-computational gap Chooses h, € H

Adversary
Chooses p; € SMOOTH, (u),
draws x; ~ p;, y; adversarially

* Consider binary classes H with VCdim(H) =

d:

» There is an algorithm with E[Reg;] < /T - VCdim(H) - log(1/0)

* Our oracle efficient algorithm has E[Reg;]| < /T - VCdim(H)/o

Does oracle efficiency require having =?) regret? | Yes!

* ERM oracle model [HK, ‘16]: calling ERM oracle takes O (1) time, as does
listing each (x;, y;) in the dataset on which ERM oracle is called

\_model

"Theorem [ours]: Fixany T € Nand g € (0,1). No randomized proper\
algorithm can guarantee regret o(T) against a o-smooth adversary
against classes H satisfying |H| < 1/0 in time 0(1/+/d) in ERM oracle

/

e [HHSY, ‘22]: proved similar result to the above




Additional results

* We also exhibit an oracle-efficient improper algorithm that achieves
better (optimal) regret dependence on T than our proper algorithm:
if fat, (H) < a2 for all « > 0, our improper algorithm has

E[Reg;| < JT/o
 Compare to T?/3 scaling for proper algorithm
e Similar result in [HHSY, 22]



Future work

1. Oracle-efficient proper regret bound with optimal scalingon T?

2. Is there a stronger notion of smoothness that can get regret scaling
with poly log 1/0 for an oracle-efficient algorithm?

3. Can we get around the o~ computational lower bound by using
an improper learning algorithm?

4. Can we get fast (i.e., 0(\/7)) rates for “nicer” loss functions? (e.g.,
square loss)
* Of course, want scaling with the non-sequential fat-shattering dimension

Thank you for listening!



