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Online learning: motivation
Online learning is a fundamental model throughout learning theory; 
applications in many areas, such as:
• Sequential decision making (reinforcement learning)
• Equilibria computation in games
• Private learning
• Online versions of problems in related areas (auction design, learning 

of quantum states, etc.)



Adversarial setting of online learning
• Fix set ! and a hypothesis class " of hypotheses ℎ: ! → 0,1
• Given a loss function ℓ: 0,1 × 0,1 → [0,1]; i.e., ℓ -., . ∈ 0,1
• Over 0 rounds:

Learner Adversary

Chooses a (possibly random) 
hypothesis ℎ!: # → [0,1]

Chooses *!, +! ∈ # ×[0,1]

Learner suffers loss ℓ(ℎ! *! , +!)

Chooses a (possibly random) 
hypothesis ℎ": # → [0,1]

Chooses *", +" ∈ # ×[0,1]

Learner suffers loss ℓ(ℎ" *" , +")

… …

Goal: minimize expected regret: ! Reg1 = ! [∑234
1 ℓ ℎ2 *2 , ,2 − inf

5∈6
∑234
1 ℓ ℎ *2 , ,2 ]

This talk: focus on proper
learning algorithms, i.e., 
require ℎ# ∈ 7 for all 8



Lower bounds for adversarial online learning
• Suppose ! = ℕ and consider class of thresholds:

$!"#$% = {& ↦ ( & ≤ * :* ∈ ℕ}
• (Unfortunate) fact: for any learner, adversary can 

choose examples (&& , 0&) so that 2 Reg' ≥ 7/2
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• Standard “fix”: in case of thresholds, truncate to ! = {1, 2, … , <}
• In online adversarial setting: can show 2 Reg' ≤ =( 7 ⋅ log <)

• Contrast with “offline (i.e., statistical) setting”: && , 0& ∼ B i.i.d. for 
some distribution B; for thresholds:
• Then can get error rates scaling as =( 7) – no dependence on <!



Minimax rates for binary classes
• Generalizing from thresholds: consider a class $ of binary

hypotheses, i.e., ℎ ∶ ! → {0,1}

Theorem [BPS,’09], [ABDMNY,’21]: The optimal online learning regret 
bound for any learner against an adversary is

2 Reg' = Θ( Ldim $ ⋅ 7)

• Ldim $ is Littlestone dimension of the class $ (won’t define here)
• Contrast with the offline (statistical) setting, where statistical rates scale 

with VC dimension of $
• In general, Ldim $ ≥ VCdim($):
• E.g., for thresholds on 1, 2, … , < : Ldim = log < , VCdim = 1



Minimax rates for general classes
• Consider a class $ of real-valued hypotheses, i.e., ℎ ∶ ! → [0,1]

Theorem [BDR, ‘21]: Under mild assumptions, the optimal online learning 

regret in the real-valued case is ! Reg! = Θ( ( ⋅ ∫"
# sfat$ / 01 )

• sfat( $ is sequential fat-shattering dimension at scale T of the class $
(won’t define here)

• Contrast with the offline (statistical) setting, where statistical rates scale 
with fat-shattering dimension at scale T (denoted UVW)) of $

• In general, sfat( $ ≥ fat(($):
• E.g., for thresholds on 1, 2, … , < : sfat(($) = log < , fat( $ = 1 for 

all X ∈ (0,1)



Beyond worst-case adversaries

Question [RST’11], [HRS’20], [HRS’21]: Can we avoid any dependence 
on Littlestone dimension (in binary case) by placing some assumption 
on the adversary? 

• The “most mild” type of adversary is i.i.d. adversary: 3% , 5% ∼ 7 for some 
fixed & known 7

• Under such i.i.d. adversary: for binary classes, optimal regret is 

8( VCdim / ⋅ ()
• So: under appropriate assumptions, want regret scaling with VC dimension!

More generally: for real-valued classes, want to avoid dependence on sequential 
fat-shattering dimension, and just get scaling with fat-shattering dimension.



Smoothed adversarial setting of online learning
• Fix set !, hypothesis class " of hypotheses ℎ: ! → 0,1 , loss ℓ -., . ∈ 0,1
• Fix a (known) distribution 1 on !: only assume that we can sample from 1

Learner Adversary

Chooses a (possibly random) 
hypothesis ℎ!: # → {0,1}

Chooses =! ∈ SMOOTH$ C , 
draws  *! ∼ =!, +! adversarially

Learner suffers loss ℓ(ℎ! *! , +!)

Chooses a (possibly random) 
hypothesis ℎ": # → {0,1}

Learner suffers loss ℓ(ℎ" *" , +")

… …

Definition [HRS’20], [HRS’21]: Given B ∈ Δ(!) and Z ∈ (0,1], define 
SMOOTH* B ≔ {a ∈ Δ ! : + ,

- ,
≤ .

*
for all c ⊂ !}

Chooses =" ∈ SMOOTH$ C , 
draws  *" ∼ =", +" adversarially



Overview of our contributions

1. Tight regret upper bound of learning a real-valued class in 
smoothed online setting
• Extends result of [HRS, ‘21] treating binary-valued setting

2. Oracle-efficient upper bound for learning a real-valued class in 
smoothed online setting
• Dependence on smoothness parameter 6 is exponentially worse than above 

upper bound.

3. Lower bound showing that regret of oracle-efficient algorithm 
cannot be significantly improved
• Establishes computational-statistical gap for smoothed online learning



Review: VC dimension, fat-shattering dimension
• Recall: given set ! and class $ of hypotheses ℎ ∶ ! →
[0,1]
• Say $ is shattered by points &., … , &/ ∈ ! at scale X if 

there are e., … , e/ ∈ [0,1] so that for any choice of 
f = f., … , f/ / ∈ −1,1 / , there is ℎ0 ∈ $ so that

∀i ∈ < , f1 ⋅ ℎ0 &1 − e1 ≥
X
2

Definition (fat-shattering dimension): For X ∈ [0,1], fat(($) is the 
largest number of points $ can shatter at scale X. 

• VC dimension defined as: VC $ = lim
(→3

fat(($)
• Note: if $ is binary-valued, fat( $ = fat(4($) for all X, X4 ∈ 0,1

• Fact: a class $ is learnable in i.i.d. setting iff fat( $ < ∞ for all X

*! *" ⋯ *%
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G! = −1 G" = 1 G% = −1
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Minimax regret for online smoothed learning
• Prior work [HRS, ‘21] for binary classes $: 

2 Reg' ≲ 7 ⋅ VCdim $ ⋅ log(1/Z)
• Above is (nearly) tight [HRS, ‘21]

Theorem [ours]: Fix some m ≤ 2. Consider any real-valued class $ so 
that fat( $ ≤ < ⋅ X56 for all X > 0. Then there is some algorithm  
with:

2 Reg' ≲ 7< ⋅ log(1/Z)

Learner Adversary
Chooses ℎ# ∈ 7 Chooses =# ∈ SMOOTH$ C , 

draws  *# ∼ =#, +# adversarially

• Note: we get rates for m > 2 as well: scaling with 7 is 7.5./6
(optimal rate even in adversarial setting)



Proof overview

Lemma 1 (coupling; slight generalization of [HRS,’21]; informal): 
Fix 7, o ∈ ℕ. For any adaptive Z-smooth adversary producing && ∼
m&, there is a coupling between (&., … , &') and  random variables 
p&
8 ∈ !, q ∈ 7 , r ∈ [o] so that:

1. Marginal of (&., … , &') is according to the smooth adversary;
2. Marginal of  {p&

8} is i.i.d. from B;
3. With probability 1 − 7 1 − Z 9, && ∈ {p&., … , p&9} for all q

Learner Adversary
Chooses ℎ# ∈ 7 Chooses =# ∈ SMOOTH$ C , 

draws  *# ∼ =#, +# adversarially

• Take 2 ∼ log(0)/: to make failure probability in last line negligible.
• High level takeaway: “effectively reduce” domain size to 0 ⋅ 2 ∼ 0/:



Proof overview, cont.
Learner Adversary

Chooses ℎ# ∈ 7 Chooses =# ∈ SMOOTH$ C , 
draws  *# ∼ =#, +# adversarially

Lemma 1 (coupling; slight generalization of [HRS,’21]; informal): There is a coupling between 
(;!, … , ;") and  random variables ?#

$
∈ A, B ∈ C , D ∈ [F] so that:

1. Marginal of (;!, … , ;") is according to the smooth adversary;
2. Marginal of  ?#

$ is i.i.d. from H;
3. With probability 1 − C 1 − K %, ;# ∈ {?#!, … , ?#%} for all B

Lemma 2: There are constants s, t > 0 so that for any function class $ on 
!, we have

uUVWN $ ≤ UVWON $ ⋅ log..3.
t ⋅ |!|

fatQ( $ ⋅ X

• Lemma 1 implies domain is “effectively” small; 
• Lemma 2 implies that online learning is no harder than offline learning when 

domain is small



Overview of our contributions

1. Tight regret upper bound of learning a real-valued class in 
smoothed online setting
• Extends result of [HRS, ‘21] treating binary-valued setting

2. Oracle-efficient upper bound for learning a real-valued class in 
smoothed online setting
• Dependence on smoothness parameter 6 is exponentially worse than above 

upper bound.

3. Lower bound showing that regret of oracle-efficient algorithm 
cannot be significantly improved
• Establishes computational-statistical gap for smoothed online learning



Oracle-efficiency in online learning
• Standard way of getting explicit online learning algorithms: construct an 
f-cover of $, use Hedge on the cover
• Issue: cover is exponentially large (e.g., in VCdim), so inefficient! 

• Our approach: assume access to an empirical risk minimization oracle:

Definition (ERM oracle): An ERM oracle takes as input:
• Sequence &., 0. , … , &R , 0R ∈ ! ×[0,1] of data points
• Sequence *., … , *R ∈ ℝ of weights
• Sequence ℓ., … , ℓR: 0,1 × 0,1 → 0,1 of (convex) loss functions;
ERM oracle outputs

zℎ = argminS∈T|
1U.

R

*1 ⋅ ℓ1(ℎ &1 , 01)



Oracle-efficient algorithms: prior work

• Generic way of using ERM oracle: follow-the-perturbed-leader (FTPL) 
[KV,’05], [Hannan,’57]
• At each round q, given past sequence &., 0. , … , (&&5., 0&5.) choose

ℎ& ≔ argminS∈T|
VU.

&5.

ℓ ℎ &V , 0V +~(ℎ)

• Originally [KV,’05]: ~(ℎ) are independent for each ℎ (inefficient!)
• Follow-ups (e.g., [DHLSSV,’17]): efficient algs. for special cases

• Lower bound in general [HK,’16]: need computation �( Ä ) for 
worst-case adversary (even with ERM oracle)

Noise process 
(random mapping 

from hypotheses to 
reals)



Using smoothness to get 
oracle efficiency
• Fix hyperparameters Å, Ç
• Learner’s procedure at each round q:

1. Draw 74, … , 7J ∼ : i.i.d
2. Draw ;4, … , ;J ∼ <(0,1) i.i.d. standard Gaussians
3. Choose ℎ2 ≔ argmin5∈6∑K34

2L4 ℓ ℎ *K , ,K + E ⋅ ∑M34
J ;M ⋅ ℎ(7M)

Learner Adversary
Chooses ℎ# ∈ 7

N(ℎ)

Theorem [ours]: Fix some m ≤ 2. Consider any real-valued class $ so 
that fat( $ ≤ X56 for all X > 0. Then above algorithm has

2 Reg' ≲ 7W/X ⋅ Z5./X

Chooses =# ∈ SMOOTH$ C , 
draws  *# ∼ =#, +# adversarially



Further results for our FTPL algorithm
Theorem [ours]: Fix some m ≤ 2. Consider any real-valued class $ so 
that fat( $ ≤ X56 for all X > 0. Then our algorithm has

2 Reg' ≲ 7W/X ⋅ Z5./X

• Note: For m > 2, we get regret scaling as 7.5
!

"($%!)

• Get optimal 7 scaling for binary classes:
Theorem [ours]: Consider any binary-valued class $. Then above 
algorithm has

2 Reg' ≲ 7 ⋅ VCdim($)/Z

• Comparison with [HHSY, ‘22]: they get better smoothness scaling (6L4/P as opposed 
to our 6L4/9) for binary classes, but don’t get any rates for nonparametric real-
valued classes (i.e., when fatQ H ≫ log 1/M) 



Proof overview
• Step 1: use standard technique to reduce to non-adaptive adversary: 

i.e., adversary chooses sequence &., 0. , … , &' , 0' without seeing 
algorithm’s predictions
• N2 still has to satisfy smoothness
• Why do this?  Can use a single draw of random process O(⋅) for all P

• Step 2: apply “Be the leader” lemma to get:

2 Reg' ≤ 2 |
&U.

'

ℓ ℎ& && , 0& − ℓ ℎ&Y. && , 0& + Complexity($)

Learner Adversary
Chooses ℎ# ∈ 7 Chooses =# ∈ SMOOTH$ C , 

draws  *# ∼ =#, +# adversarially

Stability term
Bound stability term by showing an 

upper bound on 
ℙ[ ℎ# − ℎ#'! ( ≤ T], for all T > 0



Overview of our contributions

1. Tight regret upper bound of learning a real-valued class in 
smoothed online setting
• Extends result of [HRS, ‘21] treating binary-valued setting

2. Oracle-efficient upper bound for learning a real-valued class in 
smoothed online setting
• Dependence on smoothness parameter 6 is exponentially worse than above 

upper bound.

3. Lower bound showing that regret of oracle-efficient algorithm 
cannot be significantly improved
• Establishes computational-statistical gap for smoothed online learning



Statistical-computational gap
• Consider binary classes $ with VCdim $ = <:
• There is an algorithm with ! Reg1 ≲ R ⋅ VCdim H ⋅ log(1/6)

• Our oracle efficient algorithm has ! Reg1 ≲ R ⋅ VCdim(H)/6

Learner Adversary
Chooses V) ∈ W

Does oracle efficiency require having Z5Z(.) regret?

• ERM oracle model [HK, ‘16]: calling ERM oracle takes =(1) time, as does 
listing each &1 , 01 in the dataset on which ERM oracle is called

Theorem [ours]: Fix any ! ∈ ℕ and $ ∈ (0,1). No randomized proper
algorithm can guarantee regret *(!) against a $-smooth adversary 
against classes + satisfying + ≤ 1/$ in time *(1/ $) in ERM oracle 
model
• [HHSY, ‘22]: proved similar result to the above

Yes!

Chooses =# ∈ SMOOTH$ C , 
draws  *# ∼ =#, +# adversarially



Additional results

• We also exhibit an oracle-efficient improper algorithm that achieves 
better (optimal) regret dependence on 7 than our proper algorithm: 
if fat( $ ≤ X5W for all X > 0, our improper algorithm has

2 Reg' ≲ 7/Z
• Compare to 7W/X scaling for proper algorithm
• Similar result in [HHSY, ‘22]



Future work

1. Oracle-efficient proper regret bound with optimal scaling on 7?
2. Is there a stronger notion of smoothness that can get regret scaling 

with poly log 1/Z for an oracle-efficient algorithm?
3. Can we get around the Z5[(.) computational lower bound by using 

an improper learning algorithm?
4. Can we get fast (i.e., Ü( 7)) rates for “nicer” loss functions? (e.g., 

square loss)
• Of course, want scaling with the non-sequential fat-shattering dimension

Thank you for listening!


