Smoothed Online Learning is as Easy as Statistical Learning

Adam Block

Noah Golowich

(Me)

Alexander Rakhlin

Independent & Concurrent Work

Oracle-Efficient Online Learning for Beyond Worst-Case Adversaries

by Nika Haghtalab, Yanjun Han, Abhishek Shetty, Kunhe Yang [HHSY, '22]

Online learning: motivation

Online learning is a fundamental model throughout learning theory; applications in many areas, such as:

- Sequential decision making (reinforcement learning)
- Equilibria computation in games
- Private learning

 Online versions of problems in related areas (auction design, learning of quantum states, etc.)

Adversarial setting of online learning

- Fix set X and a hypothesis class H of hypotheses $h: X \rightarrow [0,1]$
- Given a loss function $\ell: [0,1] \times [0,1] \rightarrow [0,1]$; i.e., $\ell(\hat{y}, y) \in [0,1]$
- Over *T* rounds:

This talk: focus on proper

learning algorithms, i.e.,

Goal: minimize expected regret: $\mathbb{E}[\operatorname{Reg}_T] = \mathbb{E}\left[\sum_{t=1}^T \ell(h_t(x_t), y_t) - \inf_{h \in H} \sum_{t=1}^T \ell(h(x_t), y_t)\right]$

Lower bounds for adversarial online learning

 h_d

 h_2

 h_1

1

2

• Suppose $X = \mathbb{N}$ and consider class of thresholds:

 $H_{\text{thres}} = \{ x \mapsto \mathbb{I}[x \le w] : w \in \mathbb{N} \}$

• (Unfortunate) fact: for any learner, adversary can choose examples (x_t, y_t) so that $\mathbb{E}[\operatorname{Reg}_T] \ge T/2$

- Standard "fix": in case of thresholds, truncate to $X = \{1, 2, ..., d\}$
 - In online adversarial setting: can show $\mathbb{E}[\operatorname{Reg}_T] \leq O(\sqrt{T \cdot \log d})$
- Contrast with "offline (i.e., statistical) setting": (x_t, y_t) ~ μ i.i.d. for some distribution μ; for thresholds:
 - Then can get error rates scaling as $O(\sqrt{T})$ no dependence on d!

Minimax rates for binary classes

• Generalizing from thresholds: consider a class H of binary hypotheses, i.e., $h : X \to \{0,1\}$

Theorem [BPS,'09], [ABDMNY,'21]: The optimal *online* learning regret bound for any learner against an adversary is

 $\mathbb{E}[\operatorname{Reg}_T] = \Theta(\sqrt{\operatorname{Ldim}(H) \cdot T})$

- Ldim(*H*) is Littlestone dimension of the class *H* (won't define here)
- Contrast with the *offline* (statistical) setting, where statistical rates scale with **VC dimension** of *H*
- In general, $Ldim(H) \ge VCdim(H)$:
 - E.g., for thresholds on $\{1, 2, ..., d\}$: Ldim = log d, VCdim = 1

Minimax rates for general classes

• Consider a class H of real-valued hypotheses, i.e., $h : X \rightarrow [0,1]$

Theorem [BDR, '21]: Under mild assumptions, the optimal online learning regret in the real-valued case is $\mathbb{E}[\operatorname{Reg}_T] = \Theta(\sqrt{T} \cdot \int_0^1 \sqrt{\operatorname{sfat}_{\alpha}(H)} d\alpha)$

- sfat_{α}(*H*) is sequential fat-shattering dimension at scale α of the class *H* (won't define here)
- Contrast with the *offline* (statistical) setting, where statistical rates scale with **fat-shattering dimension at scale** α (denoted fat_{α}) of *H*
- In general, $\operatorname{sfat}_{\alpha}(H) \ge \operatorname{fat}_{\alpha}(H)$:
 - E.g., for thresholds on $\{1, 2, ..., d\}$: $sfat_{\alpha}(H) = \log d$, $fat_{\alpha}(H) = 1$ for all $\alpha \in (0,1)$

Beyond worst-case adversaries

Question [RST'11], [HRS'20], [HRS'21]: Can we avoid any dependence on Littlestone dimension (in binary case) by placing some assumption on the adversary?

- The "most mild" type of adversary is i.i.d. adversary: $(x_t, y_t) \sim \mu$ for some fixed & known μ
- Under such i.i.d. adversary: for binary classes, optimal regret is $O(\sqrt{VCdim(H) \cdot T})$
- So: under appropriate assumptions, want regret scaling with VC dimension!

More generally: for real-valued classes, want to avoid dependence on sequential fat-shattering dimension, and just get scaling with fat-shattering dimension.

Smoothed adversarial setting of online learning

- Fix set X, hypothesis class H of hypotheses $h: X \to [0,1]$, loss $\ell(\hat{y}, y) \in [0,1]$
- Fix a (known) distribution μ on X: only assume that we can sample from μ

Definition [HRS'20], [HRS'21]: Given $\mu \in \Delta(X)$ and $\sigma \in (0,1]$, define **SMOOTH**_{σ}(μ) := { $P \in \Delta(X)$: $\frac{P(E)}{\mu(E)} \leq \frac{1}{\sigma}$ for all $E \subset X$ }

Overview of our contributions

- 1. Tight regret upper bound of learning a real-valued class in smoothed online setting
 - Extends result of [HRS, '21] treating binary-valued setting
- **2.** Oracle-efficient upper bound for learning a real-valued class in smoothed online setting
 - Dependence on smoothness parameter σ is exponentially worse than above upper bound.
- 3. Lower bound showing that regret of oracle-efficient algorithm cannot be significantly improved
 - Establishes computational-statistical gap for smoothed online learning

Review: VC dimension, fat-shattering dimension

- Recall: given set X and class H of hypotheses $h: X \rightarrow [0,1]$
- Say *H* is **shattered** by points $x_1, ..., x_d \in X$ at scale α if there are $s_1, ..., s_d \in [0,1]$ so that for any choice of $\epsilon = (\epsilon_1, ..., \epsilon_d)^d \in \{-1,1\}^d$, there is $h_{\epsilon} \in H$ so that $\forall i \in [d], \quad \epsilon_i \cdot (h_{\epsilon}(x_i) - s_i) \geq \frac{\alpha}{2}$

Definition (fat-shattering dimension): For $\alpha \in [0,1]$, fat_{α}(*H*) is the largest number of points *H* can shatter at scale α .

- VC dimension defined as: $VC(H) = \lim_{\alpha \to 0} fat_{\alpha}(H)$
 - Note: if *H* is binary-valued, $fat_{\alpha}(H) = fat_{\alpha'}(H)$ for all $\alpha, \alpha' \in (0,1)$
- Fact: a class H is learnable in i.i.d. setting iff $fat_{\alpha}(H) < \infty$ for all α

Learner	Adversary
Chooses $h_t \in H$	Chooses $p_t \in \text{SMOOTH}_{\sigma}(\mu)$,
	draws $x_t \sim p_t$, y_t adversarially

Minimax regret for online smoothed learning

- Prior work [HRS, '21] for binary classes *H*: $\mathbb{E}[\operatorname{Reg}_T] \lesssim \sqrt{T \cdot \operatorname{VCdim}(H) \cdot \log(1/\sigma)}$
- Above is (nearly) tight [HRS, '21]

Theorem [ours]: Fix some $p \le 2$. Consider any real-valued class H so that fat_{α} $(H) \le d \cdot \alpha^{-p}$ for all $\alpha > 0$. Then there is some algorithm with:

$$\mathbb{E}[\operatorname{Reg}_T] \lesssim \sqrt{Td} \cdot \log(1/\sigma)$$

• Note: we get rates for p > 2 as well: scaling with T is $T^{1-1/p}$ (optimal rate even in adversarial setting)

Proof overview

Lemma 1 (coupling; slight generalization of [HRS,'21]; informal): Fix $T, k \in \mathbb{N}$. For any adaptive σ -smooth adversary producing $x_t \sim p_t$, there is a coupling between $(x_1, ..., x_T)$ and random variables $Z_t^j \in X, t \in [T], j \in [k]$ so that:

- 1. Marginal of $(x_1, ..., x_T)$ is according to the smooth adversary;
- 2. Marginal of $\{Z_t^j\}$ is i.i.d. from μ ;
- 3. With probability $1 T (1 \sigma)^k$, $x_t \in \{Z_t^1, \dots, Z_t^k\}$ for all t
 - Take $k \sim \log(T)/\sigma$ to make failure probability in last line negligible.
 - High level takeaway: "effectively reduce" domain size to $T \cdot k \sim T/\sigma$

Proof overview, cont.

Lemma 1 (coupling; slight generalization of [HRS,'21]; informal): There is a coupling between

 $(x_1, ..., x_T)$ and random variables $Z_t^j \in X$, $t \in [T]$, $j \in [k]$ so that:

- 1. Marginal of $(x_1, ..., x_T)$ is according to the smooth adversary;
- 2. Marginal of Z_t^J is i.i.d. from μ ;
- 3. With probability $1 T (1 \sigma)^k$, $x_t \in \{Z_t^1, \dots, Z_t^k\}$ for all t

Lemma 2: There are constants c, C > 0 so that for any function class H on X, we have

$$\operatorname{sfat}_{\alpha}(H) \leq \operatorname{fat}_{c\alpha}(H) \cdot \log^{1.01} \frac{C \cdot |X|}{\operatorname{fat}_{c\alpha}(H) \cdot \alpha}$$

- Lemma 1 implies domain is "effectively" small;
- Lemma 2 implies that online learning is no harder than offline learning when domain is small

Overview of our contributions

- 1. Tight regret upper bound of learning a real-valued class in smoothed online setting
 - Extends result of [HRS, '21] treating binary-valued setting
- **2.** Oracle-efficient upper bound for learning a real-valued class in smoothed online setting
 - Dependence on smoothness parameter σ is exponentially worse than above upper bound.
- 3. Lower bound showing that regret of oracle-efficient algorithm cannot be significantly improved
 - Establishes computational-statistical gap for smoothed online learning

Oracle-efficiency in online learning

- Standard way of getting explicit online learning algorithms: construct an ϵ -cover of H, use Hedge on the cover
 - Issue: cover is exponentially large (e.g., in VCdim), so inefficient!
- Our approach: assume access to an **empirical risk minimization oracle**:

Definition (ERM oracle): An ERM oracle takes as input:

- Sequence $(x_1, y_1), \dots, (x_m, y_m) \in X \times [0,1]$ of data points
- Sequence $w_1, \ldots, w_m \in \mathbb{R}$ of weights
- Sequence $\ell_1, ..., \ell_m: [0,1] \times [0,1] \rightarrow [0,1]$ of (convex) loss functions; ERM oracle outputs

$$\hat{h} = \operatorname{argmin}_{h \in H} \sum_{i=1}^{m} w_i \cdot \ell_i(h(x_i), y_i)$$

Oracle-efficient algorithms: prior work

- Generic way of using ERM oracle: follow-the-perturbed-leader (FTPL) [KV,'05], [Hannan,'57]
- At each round t, given past sequence $(x_1, y_1), \dots, (x_{t-1}, y_{t-1})$ choose

$$h_t \coloneqq \operatorname{argmin}_{h \in H} \sum_{s=1}^{t-1} \ell(h(x_s), y_s) + \omega(h) \longleftarrow$$

Noise process (random mapping from hypotheses to reals)

- Originally [KV,'05]: $\omega(h)$ are independent for each h (inefficient!)
- Follow-ups (e.g., [DHLSSV,'17]): efficient algs. for special cases
- Lower bound in general [HK,'16]: *need computation* $\Omega(\sqrt{|H|})$ *for worst-case adversary (even with ERM oracle)*

Using smoothness to get oracle efficiency

Adversary
Chooses $p_t \in \text{SMOOTH}_{\sigma}(\mu)$,
draws $x_t \sim p_t$, y_t adversarially

- Fix hyperparameters n, η
- Learner's procedure at each round *t*:
 - 1. Draw $Z_1, \dots, Z_n \sim \mu$ i.i.d
 - 2. Draw $\gamma_1, \dots, \gamma_n \sim N(0,1)$ i.i.d. standard Gaussians
 - 3. Choose $h_t \coloneqq \operatorname{argmin}_{h \in H} \sum_{s=1}^{t-1} \ell(h(x_s), y_s) + \eta \cdot \sum_{i=1}^n \gamma_i \cdot h(Z_i)$

Theorem [ours]: Fix some $p \le 2$. Consider any real-valued class H so that fat_{α}(H) $\le \alpha^{-p}$ for all $\alpha > 0$. Then above algorithm has $\mathbb{E}[\operatorname{Reg}_T] \le T^{2/3} \cdot \sigma^{-1/3}$

Further results for our FTPL algorithm

Theorem [ours]: Fix some $p \le 2$. Consider any real-valued class H so that fat_{α}(H) $\le \alpha^{-p}$ for all $\alpha > 0$. Then our algorithm has $\mathbb{E}[\operatorname{Reg}_T] \le T^{2/3} \cdot \sigma^{-1/3}$

- Note: For p > 2, we get regret scaling as $T^{1-\frac{1}{3(p-1)}}$
- Get optimal \sqrt{T} scaling for binary classes:

Theorem [ours]: Consider any binary-valued class *H*. Then above algorithm has

$$\mathbb{E}[\operatorname{Reg}_T] \lesssim \sqrt{T \cdot \operatorname{VCdim}(H)}/\sigma$$

• Comparison with [HHSY, '22]: they get better smoothness scaling ($\sigma^{-1/4}$ as opposed to our $\sigma^{-1/2}$) for binary classes, but don't get any rates for nonparametric real-valued classes (i.e., when fat_{α}(H) $\gg \log 1/\alpha$)

Proof overview

- Step 1: use standard technique to reduce to non-adaptive adversary: i.e., adversary chooses sequence $(x_1, y_1), ..., (x_T, y_T)$ without seeing algorithm's predictions
 - p_t still has to satisfy smoothness
 - Why do this? Can use a single draw of random process $\omega(\cdot)$ for all t

Overview of our contributions

- 1. Tight regret upper bound of learning a real-valued class in smoothed online setting
 - Extends result of [HRS, '21] treating binary-valued setting
- **2. Oracle-efficient** upper bound for learning a real-valued class in smoothed online setting
 - Dependence on smoothness parameter σ is exponentially worse than above upper bound.
- 3. Lower bound showing that regret of oracle-efficient algorithm cannot be significantly improved
 - Establishes computational-statistical gap for smoothed online learning

Statistical-computational gap

- Consider binary classes H with VCdim(H) = d:
 - There is an algorithm with $\mathbb{E}[\operatorname{Reg}_T] \leq \sqrt{T \cdot \operatorname{VCdim}(H) \cdot \log(1/\sigma)}$
 - Our oracle efficient algorithm has $\mathbb{E}[\operatorname{Reg}_T] \leq \sqrt{T \cdot \operatorname{VCdim}(H)/\sigma}$

Does oracle efficiency require having $\sigma^{-\Omega(1)}$ regret?

Yes!

• ERM oracle model [HK, '16]: calling ERM oracle takes O(1) time, as does listing each (x_i, y_i) in the dataset on which ERM oracle is called

Theorem [ours]: Fix any $T \in \mathbb{N}$ and $\sigma \in (0,1)$. No randomized proper algorithm can guarantee regret o(T) against a σ -smooth adversary against classes H satisfying $|H| \leq 1/\sigma$ in time $o(1/\sqrt{\sigma})$ in ERM oracle model

• [HHSY, '22]: proved similar result to the above

Additional results

- We also exhibit an oracle-efficient *improper* algorithm that achieves better (optimal) regret dependence on T than our proper algorithm: if $fat_{\alpha}(H) \leq \alpha^{-2}$ for all $\alpha > 0$, our improper algorithm has $\mathbb{E}[\operatorname{Reg}_{T}] \leq \sqrt{T/\sigma}$
- Compare to $T^{2/3}$ scaling for proper algorithm
- Similar result in [HHSY, '22]

Future work

- 1. Oracle-efficient proper regret bound with optimal scaling on T?
- 2. Is there a stronger notion of smoothness that can get regret scaling with poly $\log 1/\sigma$ for an oracle-efficient algorithm?
- 3. Can we get around the $\sigma^{-\Omega(1)}$ computational lower bound by using an **improper** learning algorithm?
- 4. Can we get fast (i.e., $o(\sqrt{T})$) rates for "nicer" loss functions? (e.g., square loss)
 - Of course, want scaling with the non-sequential fat-shattering dimension

Thank you for listening!