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Reinforcement learning applications
• Involve multiple players!

• This talk: investigate some basic questions regarding 
equilibrium computation and learning in multi-player 
tabular RL environments (stochastic games)

Note: concurrent work by [Jin-Muthukumar-Sidford, ‘22] which proves some similar results



Main results: summary

1. Hardness result for computing stationary CCE in stochastic games
2. Decentralized algorithm for learning nonstationary CCE efficiently



Stochastic games: preliminaries
• Infinite-horizon discounted 𝑚-player stochastic game 𝐺 = (𝑆, 𝐴, ℙ, 𝑟, 𝛾, 𝜇):
• 𝑆 is a finite set of states
• 𝐴 = 𝐴!×⋯×𝐴" is a joint action set (agent 𝑖 ∈ [𝑚] has action set 𝐴#)

• Denote joint actions in boldface, i.e., 𝒂 = 𝑎!, … , 𝑎" ∈ 𝐴
• ℙ 𝑠$ 𝑠, 𝒂), for 𝑠, 𝑠$ ∈ 𝑆, 𝒂 ∈ 𝐴, gives transition kernel
• 𝑟 = 𝑟!, … , 𝑟" is tuple of reward functions, where 𝑟#(𝑠, 𝒂) gives 

reward function of agent 𝑖
• 𝛾 ∈ (0,1) is discount factor
• 𝜇 ∈ Δ(𝑆) is initial state distribution Environment

Given state 𝑠, choose 
actions 𝑎! ∈ 𝐴!

Receive rewards 𝑟!(𝑠, 𝒂)
Transition to 𝑠" ∼ ℙ(⋅ |𝑠, 𝒂)



Nash equilbrium Environment
Given state 𝑠, choose 

actions 𝑎! ∈ 𝐴!

Receive rewards 𝑟!(𝑠, 𝑎)
Transition to 𝑠" ∼ ℙ(⋅ |𝑠, 𝑎)

• (Markov) stationary policy: mapping 𝜋: 𝑆 → Δ(𝐴)
• Value function for player 𝑖: (below 𝒂% = (𝑎%!, … , 𝑎%"))

𝑉#& 𝑠 ≔ 1 − 𝛾 ⋅ 𝔼((#,𝒂#,($,𝒂$,… )∼(ℙ,&) B
%/!

0

𝛾%1! ⋅ 𝑟#(𝑠%, 𝒂%) | 𝑠! = 𝑠

• Also define: 𝑉#& 𝜇 ≔ 𝔼(∼2[𝑉#& 𝑠 ]

Definition: For 𝜖 > 0:
• 𝝐-apx stationary Nash equilibrium is a stationary product policy 𝜋 so that for all 𝑖, 

max
.-
.
𝑉/
.-
.,./- 𝜇 − 𝑉/. 𝜇 ≤ 𝜖.

Product policy: 𝜋 𝑠 ∈ Δ(𝐴# )×⋯×Δ(𝐴$) is 
a product distribution for all 𝑠

Problem: for a game with a single state, 𝜖-stationary Nash is just 𝜖-Nash in a 
normal-form game, which is PPAD-complete!



Coarse correlated equilibrium Environment
Given state 𝑠, choose 

actions 𝑎! ∈ 𝐴!

Receive rewards 𝑟!(𝑠, 𝑎)
Transition to 𝑠" ∼ ℙ(⋅ |𝑠, 𝑎)

• (Markov) stationary policy: mapping 𝜋: 𝑆 → Δ(𝐴)
• Value function for player 𝑖: (below 𝒂% = (𝑎%!, … , 𝑎%"))

𝑉#& 𝑠 ≔ 1 − 𝛾 ⋅ 𝔼((#,𝒂#,($,𝒂$,… )∼(ℙ,&) B
%/!

0

𝛾%1! ⋅ 𝑟#(𝑠%, 𝒂%) | 𝑠! = 𝑠

• Also define: 𝑉#& 𝜇 ≔ 𝔼(∼2[𝑉#& 𝑠 ]

Definition: For 𝜖 > 0:
• 𝝐-apx stationary CCE is a stationary policy 𝜋 so that for all players 𝑖, 

max
.-
.
𝑉/
.-
.,./- 𝜇 − 𝑉/. 𝜇 ≤ 𝜖.

• 𝝐-apx perfect stationary CCE is a stationary policy 𝜋 so that for all players 𝑖 and all 𝒔, 

max
.-
.
𝑉/
.-
.,./- 𝒔 − 𝑉/. 𝒔 ≤ 𝜖.

Perhaps: expect Coarse correlated equilibrium (CCE) 
to be tractable here (as it is in normal form games)



Background: complexity class PPAD
• Total search problems: solution (e.g., stationary CCE) always exists
• PPAD (“Polynomial Parity Arguments on Directed Graphs”):
• Roughly speaking: class consisting of total search problems which have a 

polynomial-time reduction to the End-Of-The-Line problem

• End-Of-The-Line (EOTL) problem: given a directed graph 𝐺 with 
exponentially many vertices where each vertex has at most one 
predecessor and successor, together with a source: find a sink!

• 𝐺 is specified succinctly by having a (poly-size) circuit return predecessor + 
successor of each vertex

Source Sink

Sink

• PPAD-hard problems: as hard as EOTL (likely needs super-polynomial time)



PPAD-hardness of 
stationary CCE

Theorem [Daskalakis-G-Zhang, ‘22]: For some constant 𝝐 > 0, computing 𝝐-perfect
stationary CCE in 2-player stochastic games with discount factor 𝛾 = 1/2 is PPAD-hard. 

• Larger 𝛾 always harder: so get PPAD-hardness for all 𝛾 ≥ 4
5

• Known [Deng-Li-Mguni-Wang-Yang, ‘21],[Jin-Muthukumar-Sidford, ‘22]: computing (perfect) stationary CCE is 
in PPAD, so all problems above are PPAD-complete.

Theorem [Daskalakis-G-Zhang, ‘22]: For some constant 𝝐 > 0, computing 𝝐-stationary CCE 
in 2-player stochastic games with discount factor 𝛾 = 1/2 is PPAD-hard under the “PCP for 

PPAD conjecture”. 

• 𝝐-stationary CCE is policy 𝜋 so that for all 𝑖, 
max
!!
"
𝑉"
!!
",!#! 𝜇 − 𝑉"

! 𝜇 ≤ 𝜖.

• 𝝐-perfect stationary CCE is policy 𝜋 so that for all 𝑖 and all 𝒔, 

max
!!
"
𝑉"
!!
",!#! 𝒔 − 𝑉"

! 𝒔 ≤ 𝜖.

Theorem [Daskalakis-G-Zhang, ‘22]: For some constant 𝑐 > 0, computing 𝒄/𝒏-stationary 
CCE in 2-player, 𝒏-state stochastic games with discount factor 𝛾 = 1/2 is PPAD-hard.



Proof overview of hardness result

Proof idea: Reduce from the (PPAD-hard) 𝝐-generalized circuit (GCircuit) problem:

Theorem [Daskalakis-G-Zhang, ‘22]: For some constant 𝝐 > 0, computing 𝝐-perfect stationary Nash 
equilibrium in 2-player turn-based stochastic games with discount factor 𝛾 = 1/2 is PPAD-hard. 

Definition (𝝐-Generalized circuit problem; informal): Given a circuit, i.e., 
collection of gates 𝐺, each gate being one of the following:

Problem: find an assignment of real values to all wires of the circuit such that 
constraints of all gates are satisfied up to ±𝜖

𝑔%

𝑥

𝑦

𝛼𝑥 + 𝛽𝑦

(Weighted) summation gate 𝑔%
(parametrized by 𝛼, 𝛽 ∈ ℝ)

𝑔&

𝑥

𝑦

1 if 𝑥 > 𝑦
0 if 𝑥 < 𝑦

Comparison gate 𝑔&

𝑔' 𝜁

Assignment gate 𝑔'
(parametrized by 𝜁 ∈ {0,1})

𝑥, 𝑦 are 
outputs from 
other gates

First step: consider turn-based stochastic games: special case where 1 player acts at each state
• Key point: CCE and Nash equilibria are equivalent in turn-based games

Concurrent work [Jin-Muthukumar-
Sidford, ‘22]: get below theorem for 
|𝑆|-player games (i.e., weaker result)



Proof overview of hardness result: |𝑆|-player games
• Known: Finding assignment to an 𝜖-GCircuit instance is PPAD-hard [Daskalakis-Golberg-

Papadimitriou, ‘06],[Chen-Deng-Teng,’09],[Rubinstein, ‘18]: 

• Our proof: shows how to “simulate” each gate in a generalized circuit using  𝑂(1) states in 
a turn-based stochastic game where each state has 2 actions (i.e., 𝐴/ = {0,1})

• First establish the (easier) result where each state in the game is controlled by a different 
player (as in [Jin-Muthukumar-Sidford, ‘22]; uses ideas from [Daskalakis-Goldberg-Papadimitriou, ‘06])

• Example: implement summation gate in a stochastic game:

𝑔

𝑥

𝑦

𝟏
𝟐𝒙 +

𝟏
𝟐𝒚

Summation gate 𝑔
(suppose 𝛼 = 𝛽 = #

(
for simplicity):

𝑓

ℎ

Simulation in a stochastic game
(rewards not shown)

𝑠)
𝑠*

𝑠+
𝑤

ℙ 𝑠# 𝑤, 0 =
1
2

ℙ 𝑠$ 𝑤, 0 =
1
2

ℙ 𝑠% 𝑤, 1 = 1

ℙ 𝑤 𝑠% , 0 = 1

𝑠,-./

ℙ 𝑠&'() 𝑠% , 1 = 1

Lemma [ours; informal]: For any 𝜖 > 0, exists 𝜖0 > 0 so that for any 𝜖′-
stationary NE 𝜋: 𝑆 → [0,1], it holds that 𝝅 𝒔𝒈 = 𝟏

𝟐
𝝅 𝒔𝒇 + 𝟏

𝟐
𝝅 𝒔𝒉 ± 𝝐.

Observation: since 
game is turn-based and 
𝐴! = {0,1}, stationary 
policy 𝜋: 𝑆 → Δ(𝐴) is 
simply a mapping 
𝜋: 𝑆 → [0,1]



Proof overview of hardness result: 2-player games

• Issue when trying to prove hardness for 2-player games: rewards from different 
gadgets may conflict with one another!
• Example of conflict: try to assign all helper nodes “𝑤” to one player, all non-helper 

nodes to the other player
• Requirement that 𝑟( 𝑠) , 1 = 2 above may conflict with requirement that (e.g.) 𝑟( 𝑠) , 1 =
1 ≠ 2 from some other weighted summation gate

• Solution: show how to “pre-process” any generalized circuit instance (using a notion 
of “valid coloring” we introduce) to avoid conflicts
• Pre-processing uses the unary-to-binary and binary-to-unary constructions in [Rubinstein, ‘18]

𝑠)

𝑠*

𝑠+
𝑤

𝑠,-./

𝑟* 𝑠# , 1 = 2

𝑟* 𝑠$ , 1 = 2 𝑟* 𝑠% , 1 = 1

𝑟+! 𝑤, 1 = 1
𝑟+! 𝑤, 0 = −1

Summation gate with 𝛼 = 𝛽 = 1; 
all rewards not shown are 0

𝑠0

𝑠1
𝑤′

𝑟* 𝑠# , 1 = 1

𝑠,-./
𝑟+! 𝑤′, 1 = 1
𝑟+! 𝑤′, 0 = −1

𝑟*" 𝑠, , 1 = 2

𝑟*" 𝑠- , 1 = 2



What is computable?
• How to get around PPAD-hardness: allow for 

nonstationary CCE:
• Nonstationary policy 𝜋 is a collection 𝜋 =
(𝜋3, 𝜋4, … ), where each 𝜋5: 𝑆 → Δ(𝐴)
• Allow choice of actions to depend on the time 

step

Definition: For 𝜖 > 0, an 𝝐-nonstationary coarse 
correlated equilibrium (CCE) is a nonstationary 
policy 𝜋 so that for all players 𝑖, 

max
.-
.
𝑉/
.-
.,./- 𝜇 − 𝑉/. 𝜇 ≤ 𝜖.

Environment
Given state 𝑠., choose 
actions 𝒂𝟏 ∼ 𝝅𝟏 ⋅ |𝑠.

Receive rewards 𝑟!(𝑠., 𝒂𝟏)
Transition to 𝑠0 ∼ ℙ(⋅ |𝑠., 𝒂𝟏)

Environment
Given state 𝑠$, choose 
actions 𝒂𝒉 ∼ 𝝅𝒉 ⋅ |𝑠$

Receive rewards 𝑟!(𝑠$ , 𝒂𝒉)
Transition to 𝑠$ ∼ ℙ(⋅ |𝑠$ , 𝒂𝒉)

⋯
⋯

Nonstationary CCE same as stationary CCE, except policy no 
longer stationary



What is computable?
Definition: For 𝜖 > 0, an 𝝐-nonstationary 
coarse correlated equilibrium (CCE) is a 
nonstationary policy 𝜋 so that for all players 
𝑖, 

max
.-
.
𝑉/
.-
.,./- 𝜇 − 𝑉/. 𝜇 ≤ 𝜖.

Environment
Given state 𝑠., choose 
actions 𝒂𝟏 ∼ 𝝅𝟏 ⋅ |𝑠.

Receive rewards 𝑟!(𝑠., 𝒂𝟏)
Transition to 𝑠0 ∼ ℙ(⋅ |𝑠., 𝒂𝟏)

Environment
Given state 𝑠$, choose 
actions 𝒂𝒉 ∼ 𝝅𝒉 ⋅ |𝑠$

Receive rewards 𝑟!(𝑠$ , 𝒂𝒉)
Transition to 𝑠$ ∼ ℙ(⋅ |𝑠$ , 𝒂𝒉)

⋯
⋯

• Fact (folklore): 𝜖-nonstationary CCE may be 
computed in poly time if stochastic game is 
known
• How? Simply use backwards induction and 

truncate after RST 4/V4WX steps (more detail later)



Prior work -- 2 groups of work:
1. Requires exponential time in number of players [Liu-Yu-Bai-Jin,’21]
• Curse of multi-agents
• Algorithm is model-based (learn entire transitions ℙ ⋅ 𝑠, 𝒂))
• Does output Markov policy

2. Is poly-time, but does not learn a Markov policy [Song-Mei-
Bai,’21],[Jin-Liu-Wang-Liu,’21],[Mao-Basar,’21’]
• V-learning algorithm – avoids curse of multi-agents using regret minimization 

algorithm at each state
• Policies output by V-learning are history-dependent: is complicated function 

of the policies played by bandit learners in the course of the algorithm
• Is decentralized…

Can we learn nonstationary CCE 
(i.e., if the stochastic game is unknown)?



Additional desideratum: decentralized algorithms
Decentralized model:
• Agents only see states, their own actions, and their own rewards
• Agents have access to common randomness 𝑅 (used to correlate their actions during course 

of algorithm)
• No communication between agents allowed

Environment

Choose action 
𝑎# (using 𝑅)

Transition to 𝑠" ∼ ℙ(⋅ |𝑠, 𝒂)
(for 𝒂 = (𝑎#, 𝑎(, 𝑎2))

010010111101010
010101010001010
10101001010100…

Agent 1 Agent 2 Agent 3

Choose action 
𝑎( (using 𝑅) Choose action 

𝑎2 (using 𝑅)

Observe 𝑠", 
reward 𝑟#(𝑠, 𝒂)

Observe 𝑠′,
reward 𝑟((𝑠, 𝒂)

Observe 𝑠′,
reward 𝑟2(𝑠, 𝒂)

𝑅:

Not needed in V-learning



Guarantee for decentralized learning

Theorem [DGZ, ‘22]: There is a decentralized learning algorithm (SPoCMAR) that requires 

!𝑂
!9⋅#$%

-∈[;]
{'-}

)9⋅ *+, => samples, polynomial time, and outputs an 𝜖-nonstationary Markov CCE (whp). 

Learning setup (Episodic PAC-RL model):
• “Episodic”: Only access to game is ability to 

repeatedly sample trajectories (i.e., sequence of 
𝑠Z, 𝒂Z) in decentralized setting

• “PAC RL”: At end of interaction, output ϵ-CCE whp
• Technical point: Need to be able to truncate

trajectories – we assume that trajectories are 

truncated at 𝐻 =
RST=?
4WX steps

• Our result holds in finite-horizon setting too 
(no need to truncate)

Environment

Episode 1: each player 𝑖 chooses policy & sees
𝑠#, 𝑎!#, 𝑟! 𝑠#, 𝒂# , 𝑠(, 𝑎!(, 𝑟! 𝑠(, 𝒂( , …

Episode 2: each player 𝑖 chooses policy & sees
𝑠#, 𝑎!#, 𝑟! 𝑠#, 𝒂# , 𝑠(, 𝑎!(, 𝑟! 𝑠(, 𝒂( , …

Episode 3: each player 𝑖 chooses policy & sees
𝑠#, 𝑎!#, 𝑟! 𝑠#, 𝒂# , 𝑠(, 𝑎!(, 𝑟! 𝑠(, 𝒂( , …⋯



Warm-up: computing CCE if game is known

• Ignore all steps after 𝐻 ≔ RST 4/V
4WX steps (safe since they contribute < 𝜖 to value functions)

Fact (folklore): 𝜖-nonstationary CCE may be computed in poly time if stochastic game is known

ℎ = 1 ℎ = 2 ℎ = 3 = 𝐻

States



Warm-up: computing CCE if game is known

• Ignore all steps after 𝐻 ≔ RST 4/V
4WX steps (safe since they contribute < 𝜖 to value functions)

Fact (folklore): 𝜖-nonstationary CCE may be computed in poly time if stochastic game is known

ℎ = 1 ℎ = 2 ℎ = 3 = 𝐻

States

• Construct functions 𝑉/,Z: 𝑆 → ℝ, policy 𝜋Z: 𝑆 → Δ(𝐴)
for ℎ = 𝐻 + 1,𝐻,𝐻 − 1,… , 1 inductively:

Base	Case:	
𝑉!,45# 𝑠 ← 0 for all 𝑠, 𝑖



Warm-up: computing CCE if game is known

• Ignore all steps after 𝐻 ≔ RST 4/V
4WX steps (safe since they contribute < 𝜖 to value functions)

Fact (folklore): 𝜖-nonstationary CCE may be computed in poly time if stochastic game is known

ℎ = 1 ℎ = 2 ℎ = 3 = 𝐻

States

Base	Case:	
𝑉!,45# 𝑠 ← 0 for all 𝑠, 𝑖

Inductive step:
1. Assume given 𝑉!,+5#: 𝑆 → ℝ (e.g., ℎ = 2)
2. For each 𝑠 ∈ 𝑆, 𝑖 ∈ [𝑚], construct mapping 

𝐹!%: 𝐴 → ℝ:

3. Compute a 𝜖-CCE of each (𝐹#%, … , 𝐹$%), and let 
that be 𝜋+ 𝑠 ∈ Δ(𝐴)

𝐹!% 𝒂 ≔ 𝑟! 𝑠, 𝒂 + 𝔼%$∼ℙ(⋅|%,𝒂)[𝑉!,+5# 𝑠" ]

• Construct functions 𝑉/,Z: 𝑆 → ℝ, policy 𝜋Z: 𝑆 → Δ(𝐴)
for ℎ = 𝐻 + 1,𝐻,𝐻 − 1,… , 1 inductively:



Warm-up: computing CCE if game is known

• Ignore all steps after 𝐻 ≔ RST 4/V
4WX steps (safe since they contribute < 𝜖 to value functions)

Fact (folklore): 𝜖-nonstationary CCE may be computed in poly time if stochastic game is known

ℎ = 1 ℎ = 2 ℎ = 3 = 𝐻

States

Base	Case:	
𝑉!,45# 𝑠 ← 0 for all 𝑠, 𝑖

Inductive step:
1. Assume given 𝑉!,+5#: 𝑆 → ℝ (e.g., ℎ = 2)
2. For each 𝑠 ∈ 𝑆, 𝑖 ∈ [𝑚], construct mapping 

𝐹!%: 𝐴 → ℝ:

3. Compute a 𝜖-CCE of each (𝐹#%, … , 𝐹$%), and let 
that be 𝜋+ 𝑠 ∈ Δ(𝐴)

4. Let 𝑉!,+ 𝑠 ≔ 𝔼𝒂∼=%(%)[𝐹!% 𝒂 ]

𝐹!% 𝒂 ≔ 𝑟! 𝑠, 𝒂 + 𝔼%$∼ℙ(⋅|%,𝒂)[𝑉!,+5# 𝑠" ]

• Construct functions 𝑉/,Z: 𝑆 → ℝ, policy 𝜋Z: 𝑆 → Δ(𝐴)
for ℎ = 𝐻 + 1,𝐻,𝐻 − 1,… , 1 inductively:



Warm-up: computing CCE if game is known

• Ignore all steps after 𝐻 ≔ RST 4/V
4WX steps (safe since they contribute < 𝜖 to value functions)

Fact (folklore): 𝜖-nonstationary CCE may be computed in poly time if stochastic game is known

ℎ = 1 ℎ = 2 ℎ = 3 = 𝐻

States

Base	Case:	
𝑉!,45# 𝑠 ← 0 for all 𝑠, 𝑖

Inductive step:
1. Assume given 𝑉!,+5#: 𝑆 → ℝ (e.g., ℎ = 1)
2. For each 𝑠 ∈ 𝑆, 𝑖 ∈ [𝑚], construct mapping 

𝐹!%: 𝐴 → ℝ:

3. Compute a 𝜖-CCE of each (𝐹#%, … , 𝐹$%), and let 
that be 𝜋+ 𝑠 ∈ Δ(𝐴)

4. Let 𝑉!,+ 𝑠 ≔ 𝔼𝒂∼=%(%)[𝐹!% 𝒂 ]

𝐹!% 𝒂 ≔ 𝑟! 𝑠, 𝒂 + 𝔼%$∼ℙ(⋅|%,𝒂)[𝑉!,+5# 𝑠" ]

Output: 𝝅 ≔ (𝝅𝟏, … , 𝝅𝑯)

Actually: use 
bandit no-regret 

learner here

• Construct functions 𝑉/,Z: 𝑆 → ℝ, policy 𝜋Z: 𝑆 → Δ(𝐴)
for ℎ = 𝐻 + 1,𝐻,𝐻 − 1,… , 1 inductively:



SPoCMAR: Stage-Based Policy Cover for Multi-
Agent Learning with Rmax
• What to do if the game is not known?

• Idea in V-learning: replace computation of CCE of games 𝐹!" with no-regret learner, 
update 𝑉!,$ incrementally 

• Issue: due to interdependence between V-updates in V-learning, don’t get Markov 
policy

• Our solution: use a combination of multi-stage algorithm and policy cover 
to allow us to compute a Markov (nonstationary) policy
• These tools make it tricky to use UCB bonuses (as in V-learning)
• So instead we use Rmax-type bonuses [Brafman-Tennenholz, ‘02], which leads to %

&@

sample complexity (as opposed to the tight %
&A

)



SPoCMAR: Stage-Based Policy Cover for Multi-
Agent Learning with Rmax

ℎ = 1 ℎ = 2 ℎ = 3 = 𝐻

States

• Initially: all states unvisited, 𝑉6,89: 𝑠 = 0 for all 𝑠



SPoCMAR: Stage-Based Policy Cover for Multi-
Agent Learning with Rmax

ℎ = 1 ℎ = 2 ℎ = 3 = 𝐻

States

• Initially: all states unvisited, 𝑉6,89: 𝑠 = 0 for all 𝑠
• At each stage: some subset 𝑊 of pairs (ℎ, 𝑠) are ”known”, i.e., 

exists policy 𝜋;< that visits (ℎ, 𝑠) with nontrivial probability
• Set of 𝜋;< known as policy cover

• At each stage: for all ℎ, 𝑠 ∈ 𝑊, play 𝜋;< so as to reach (ℎ, 𝑠), 
then play bandit no-regret learner at (ℎ, 𝑠), transition to 𝑠′
• Reward for bandit learner: 𝑉6,;9:(𝑠′) function, computed 

inductively
• At end of stage: average rewards from bandit learner to compute 
𝑉6;(𝑠) for all ℎ, 𝑠 ∈ 𝑊

• What about ℎ, 𝑠 ∉ 𝑊? 𝑉6; 𝑠 ≔ 𝐻 + 1 − ℎ (Rmax bonuses)

(ℎ, 𝑠)
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ℎ = 1 ℎ = 2 ℎ = 3 = 𝐻

States

• Initially: all states unvisited, 𝑉6,89: 𝑠 = 0 for all 𝑠
• At each stage: some subset 𝑊 of pairs (ℎ, 𝑠) are ”known”, i.e., 

exists policy 𝜋;< that visits (ℎ, 𝑠) with nontrivial probability
• Set of 𝜋;< known as policy cover

• At each stage: for all ℎ, 𝑠 ∈ 𝑊, play 𝜋;< so as to reach (ℎ, 𝑠), 
then play bandit no-regret learner at (ℎ, 𝑠), transition to 𝑠′
• Reward for bandit learner: 𝑉6,;9:(𝑠′) function, computed 

inductively
• At end of stage: average rewards from bandit learner to compute 
𝑉6;(𝑠) for all ℎ, 𝑠 ∈ 𝑊

• What about ℎ, 𝑠 ∉ 𝑊? 𝑉6; 𝑠 ≔ 𝐻 + 1 − ℎ (Rmax bonuses)
• If bandit learner at (ℎ, 𝑠) visits “unknown” state 𝑠0 at step ℎ + 1:

• Can use it to compute a cover policy 𝜋;9:,<0 (progress!)

(ℎ, 𝑠)
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SPoCMAR: Stage-Based Policy Cover for Multi-
Agent Learning with Rmax

ℎ = 1 ℎ = 2 ℎ = 3 = 𝐻

States

• Initially: all states unvisited, 𝑉6,89: 𝑠 = 0 for all 𝑠
• At each stage: some subset 𝑊 of pairs (ℎ, 𝑠) are ”known”, i.e., 

exists policy 𝜋;< that visits (ℎ, 𝑠) with nontrivial probability
• Set of 𝜋;< known as policy cover

• At each stage: for all ℎ, 𝑠 ∈ 𝑊, play 𝜋;< so as to reach (ℎ, 𝑠), 
then play bandit no-regret learner at (ℎ, 𝑠), transition to 𝑠′
• Reward for bandit learner: 𝑉6,;9:(𝑠′) function, computed 

inductively
• At end of stage: average rewards from bandit learner to compute 
𝑉6;(𝑠) for all ℎ, 𝑠 ∈ 𝑊

• What about ℎ, 𝑠 ∉ 𝑊? 𝑉6; 𝑠 ≔ 𝐻 + 1 − ℎ (Rmax bonuses)
• If bandit learner at (ℎ, 𝑠) visits “unknown” state 𝑠0 at step ℎ + 1:

• Can use it to compute a cover policy 𝜋;9:,<0 (progress!)
• Otherwise: policies from bandit learners can be concatenated to 

produce output policy, J

(ℎ, 𝑠)
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Conclusions/Open problems

Markov-Stationary Markov-Nonstationary Non-Markov

Computation PPAD-hard [our paper] [folklore]: Polynomial [folklore]: Polynomial

Learning PPAD-hard [our paper] [LYBJ,’21]: Exponential (in 
#players) 
Polynomial [our paper]

[SMB,’21],[MB,’21],[JLWY,’21]: Polynomial 
(via V-learning)

Summary of computation costs for finding CCE in general-sum stochastic games:

Open questions:
• Can we get PPAD-hardness of finding 𝜖-stationary CCE (non-perfect) for constant 𝜖

without assuming “PCP for PPAD conjecture”?
• Tighter sample complexity for upper bound?
• More natural/simpler algorithm instead of SPoCMAR?
• Extend upper bound results to settings with (e.g., linear) function approximation?

Thank you for listening!



SPoCMAR: Stage-Based Policy Cover for Multi-
Agent Learning with Rmax
1. Maintain a set 𝚷𝐜𝐨𝐯𝐞𝐫 ≔ {𝜋+%: ℎ ∈ 𝐻 , 𝑠 ∈ 𝑆} denoting policy cover (initially 𝜋+% = ⊥ for all ℎ, 𝑠)

2. Maintain a set 𝑊 ⊂ 𝐻 ×𝑆 of ”well-visited” states (initialized to ∅)

3. For each stage 𝑞 ≥ 1:
• Initialize 𝑉!,45# 𝑠 ← 0 for all agents 𝑖, states 𝑠
• For ℎ = 𝐻,𝐻 − 1,… , 1:

A. Each player initializes an adversarial bandit no-regret learner at each state 𝑠
B. For each non-null policy 𝝅 ∈ 𝜫𝒄𝒐𝒗𝒆𝒓: choose actions according to 𝜋 up to step ℎ − 1, then 

according to the bandit no-regret learners at step ℎ
• Sample a trajectory: (𝑠#, 𝒂#, 𝑟!# ! , … , 𝑠+5#, 𝒂+5#, 𝑟!,+5# ! …)
• If 𝑠+ , ℎ ∈ 𝑊: update bandit instances at (𝑠+ , ℎ) with reward 𝑟!+ + 𝑉!,+5#(𝑠+5#)
• If 𝑠+ , ℎ ∉ 𝑊: update bandit instances at (𝑠+ , ℎ) with reward 𝐻 + 1 − ℎ (Rmax reward)

C. Define 𝑉!+(𝑠) for all 𝑠 as average of rewards given to bandit instance at 𝑠
• Define x𝜋L as acting at each step ℎ per the empirical average of the bandit instances in above procedure
• If x𝜋L mostly only visits states in 𝑊: output x𝜋L, terminate J
• Else: for some “newly visited” state (ℎ, 𝑠), set 𝜋+% ← x𝜋L, add (ℎ, 𝑠) to 𝑊, continue with next stage

“backwards induction” idea from 
known model setting


