The Complexity of Markov Equilibrium in Stochastic Games

Constantinos Daskalakis

Noah Golowich

Kaiqing Zhang

Reinforcement learning applications

• Involve multiple players!

 This talk: investigate some basic questions regarding equilibrium computation and learning in multi-player tabular RL environments (stochastic games)

Note: concurrent work by [Jin-Muthukumar-Sidford, '22] which proves some similar results

Main results: summary

- 1. Hardness result for computing **stationary** CCE in stochastic games
- 2. Decentralized algorithm for learning **nonstationary** CCE efficiently

Stochastic games: preliminaries

- Infinite-horizon discounted *m*-player stochastic game $G = (S, A, \mathbb{P}, r, \gamma, \mu)$:
 - *S* is a finite set of **states**
 - $A = A_1 \times \cdots \times A_m$ is a joint action set (agent $i \in [m]$ has action set A_i)
 - Denote joint actions in boldface, i.e., $\mathbf{a} = (a_1, \dots, a_m) \in A$
 - $\mathbb{P}(s'|s, a)$, for $s, s' \in S$, $a \in A$, gives transition kernel
 - $r = (r_1, ..., r_m)$ is tuple of **reward functions**, where $r_i(s, a)$ gives **reward function** of agent *i*
 - $\gamma \in (0,1)$ is discount factor
 - $\mu \in \Delta(S)$ is initial state distribution

Nash equilbrium

- (Markov) stationary policy: mapping $\pi: S \to \Delta(A)$
- Value function for player *i*: (below $a_h = (a_{h1}, ..., a_{hm})$)

$$V_i^{\pi}(s) \coloneqq (1 - \gamma) \cdot \mathbb{E}_{(s_1, a_1, s_2, a_2, \dots) \sim (\mathbb{P}, \pi)} \left[\sum_{h=1}^{n} \gamma^{h-1} \cdot r_i(s_h, a_h) \mid s_1 = s \right]$$

• Also define: $V_i^{\pi}(\mu) \coloneqq \mathbb{E}_{s \sim \mu}[V_i^{\pi}(s)]$

Product policy: $\pi(s) \in \Delta(A_1) \times \cdots \times \Delta(A_m)$ is a *product distribution* for all *s*

Given state s, choose actions $a_i \in A_i$

Receive rewards $r_i(s, a)$ Transition to $s' \sim \mathbb{P}(\cdot | s, a)$ Environment

Definition: For $\epsilon > 0$:

• ϵ -apx stationary Nash equilibrium is a stationary product policy π so that for all i,

$$\max_{\pi'_i} V_i^{\pi'_i,\pi_{-i}}(\mu) - V_i^{\pi}(\mu) \le \epsilon.$$

Problem: for a game with a single state, ϵ -stationary Nash is just ϵ -Nash in a normal-form game, which is PPAD-complete!

Coarse correlated equilibrium

- (Markov) stationary policy: mapping $\pi: S \to \Delta(A)$
- Value function for player *i*: (below $\boldsymbol{a}_h = (a_{h1}, ..., a_{hm})$)

$$V_i^{\pi}(s) \coloneqq (1 - \gamma) \cdot \mathbb{E}_{(s_1, a_1, s_2, a_2, \dots) \sim (\mathbb{P}, \pi)} \left[\sum_{h=1}^{n} \gamma^{h-1} \cdot r_i(s_h, a_h) \mid s_1 = s \right]$$

• Also define:
$$V_i^{\pi}(\mu) \coloneqq \mathbb{E}_{s \sim \mu}[V_i^{\pi}(s)]$$

Perhaps: expect **Coarse correlated equilibrium (CCE)** to be tractable here (as it is in normal form games)

Given state *s*, choose $actions a_i \in A_i$

Receive rewards $r_i(s, a)$ Transition to $s' \sim \mathbb{P}(\cdot | s, a)$ Environment

Definition: For $\epsilon > 0$:

• ϵ -apx stationary CCE is a stationary policy π so that for all players *i*,

$$\max_{\pi'_i} V_i^{\pi'_i, \pi_{-i}}(\mu) - V_i^{\pi}(\mu) \le \epsilon.$$

• ϵ -apx perfect stationary CCE is a stationary policy π so that for all players *i* and all *s*,

$$\max_{\pi'_i} V_i^{\pi'_i,\pi_{-i}}(\mathbf{s}) - V_i^{\pi}(\mathbf{s}) \le \epsilon.$$

Background: complexity class PPAD

- Total search problems: solution (e.g., stationary CCE) always exists
- PPAD ("Polynomial Parity Arguments on Directed Graphs"):
 - Roughly speaking: class consisting of total search problems which have a polynomial-time reduction to the End-Of-The-Line problem
- End-Of-The-Line (EOTL) problem: given a directed graph G with exponentially many vertices where each vertex has at most one predecessor and successor, together with a source: find a sink!

- *G* is specified succinctly by having a (poly-size) circuit return predecessor + successor of each vertex
- **PPAD-hard** problems: as hard as EOTL (likely needs super-polynomial time)

PPAD-hardness of stationary CCE

• ϵ -stationary CCE is policy π so that for all i, $\max_{\pi'_i} V_i^{\pi'_i,\pi_{-i}}(\mu) - V_i^{\pi}(\mu) \le \epsilon.$ • ϵ -perfect stationary CCE is policy π so that for all i and all s, $\max_{\pi'_i} V_i^{\pi'_i,\pi_{-i}}(s) - V_i^{\pi}(s) \le \epsilon.$

Theorem [Daskalakis-G-Zhang, '22]: For some constant $\epsilon > 0$, computing ϵ -perfect stationary CCE in 2-player stochastic games with discount factor $\gamma = 1/2$ is PPAD-hard.

Theorem [Daskalakis-G-Zhang, '22]: For some constant $\epsilon > 0$, computing ϵ -stationary CCE in 2-player stochastic games with discount factor $\gamma = 1/2$ is PPAD-hard under the "PCP for PPAD conjecture".

Theorem [Daskalakis-G-Zhang, '22]: For some constant c > 0, computing c/n-stationary CCE in **2-player**, *n*-state stochastic games with discount factor $\gamma = 1/2$ is PPAD-hard.

- Larger γ always harder: so get PPAD-hardness for all $\gamma \geq \frac{1}{2}$
- Known [Deng-Li-Mguni-Wang-Yang, '21],[Jin-Muthukumar-Sidford, '22]: computing (perfect) stationary CCE is in PPAD, so all problems above are PPAD-complete.

Proof overview of hardness result

Concurrent work [Jin-Muthukumar-Sidford, '22]: get below theorem for |S|-player games (i.e., weaker result)

First step: consider turn-based stochastic games: special case where 1 player acts at each state

• Key point: CCE and Nash equilibria are equivalent in turn-based games

Theorem [Daskalakis-G-Zhang, '22]: For some constant $\epsilon > 0$, computing ϵ -perfect stationary Nash equilibrium in 2-player turn-based stochastic games with discount factor $\gamma = 1/2$ is PPAD-hard.

Proof idea: Reduce from the (PPAD-hard) *e-generalized circuit* (GCircuit) problem:

Definition (ϵ **-Generalized circuit problem; informal):** Given a circuit, i.e., collection of gates G, each gate being one of the following:

Assignment gate g_a (parametrized by $\zeta \in \{0,1\}$)

 $g_a \rightarrow q$

x, y are outputs from other gates

Problem: find an assignment of real values to all wires of the circuit such that constraints of all gates are satisfied up to $\pm\epsilon$

Proof overview of hardness result: |S|-player games

- Known: Finding assignment to an *e*-GCircuit instance is PPAD-hard [Daskalakis-Golberg-Papadimitriou, '06],[Chen-Deng-Teng,'09],[Rubinstein, '18]:
- Our proof: shows how to "simulate" each gate in a generalized circuit using O(1) states in a turn-based stochastic game where each state has 2 actions (i.e., $A_i = \{0,1\}$)
- First establish the (easier) result where each state in the game is controlled by a different player (as in [Jin-Muthukumar-Sidford, '22]; uses ideas from [Daskalakis-Goldberg-Papadimitriou, '06])
- Example: implement summation gate in a stochastic game:

Summation gate g(suppose $\alpha = \beta = \frac{1}{2}$ for simplicity):

Observation: since game is turn-based and $A_i = \{0,1\}$, stationary policy $\pi: S \to \Delta(A)$ is simply a mapping $\pi: S \to [0,1]$

Lemma [ours; informal]: For any $\epsilon > 0$, exists $\epsilon' > 0$ so that for any ϵ' -stationary NE $\pi: S \to [0,1]$, it holds that $\pi(s_g) = \frac{1}{2}\pi(s_f) + \frac{1}{2}\pi(s_h) \pm \epsilon$.

- Issue when trying to prove hardness for 2-player games: rewards from different gadgets may *conflict* with one another!
- Example of conflict: try to assign all helper nodes "w" to one player, all non-helper nodes to the other player
 - Requirement that $r_w(s_f, 1) = 2$ above may conflict with requirement that (e.g.) $r_w(s_f, 1) = 1 \neq 2$ from some other weighted summation gate
- Solution: show how to "pre-process" any generalized circuit instance (using a notion of "valid coloring" we introduce) to avoid conflicts
 - Pre-processing uses the unary-to-binary and binary-to-unary constructions in [Rubinstein, '18]

What is computable?

- How to get around PPAD-hardness: allow for nonstationary CCE:
- Nonstationary policy π is a collection $\pi = (\pi_1, \pi_2, ...)$, where each $\pi_h: S \to \Delta(A)$
 - Allow choice of actions to depend on the time step

Definition: For $\epsilon > 0$, an ϵ -nonstationary coarse correlated equilibrium (CCE) is a nonstationary policy π so that for all players i,

$$\max_{\pi'_i} V_i^{\pi'_i,\pi_{-i}}(\mu) - V_i^{\pi}(\mu) \le \epsilon.$$

Nonstationary CCE same as stationary CCE, except policy no longer stationary

What is computable?

Definition: For $\epsilon > 0$, an ϵ -nonstationary coarse correlated equilibrium (CCE) is a nonstationary policy π so that for all players i,

$$\max_{\pi'_i} V_i^{\pi'_i,\pi_{-i}}(\mu) - V_i^{\pi}(\mu) \le \epsilon.$$

- Fact (folklore): ε-nonstationary CCE may be computed in poly time if stochastic game is known
 - How? Simply use backwards induction and truncate after $\frac{\log 1/\epsilon}{1-\gamma}$ steps (more detail later)

- •
- •
- •

Can we **learn** nonstationary CCE (i.e., if the stochastic game is unknown)?

Prior work -- 2 groups of work:

- 1. Requires *exponential time* in number of players [*Liu-Yu-Bai-Jin,*'21]
 - Curse of multi-agents
 - Algorithm is model-based (learn entire transitions $\mathbb{P}(\cdot|s, a)$)
 - Does output Markov policy
- 2. Is poly-time, but *does not learn a Markov policy* [Song-Mei-Bai,'21],[Jin-Liu-Wang-Liu,'21],[Mao-Basar,'21']
 - V-learning algorithm avoids curse of multi-agents using regret minimization algorithm at each state
 - Policies output by V-learning are *history-dependent*: is complicated function of the policies played by bandit learners in the course of the algorithm
 - Is decentralized...

Additional desideratum: decentralized algorithms

Decentralized model:

- Agents only see states, their own actions, and their own rewards
- Agents have access to *common randomness R* (used to correlate their actions during course of algorithm)
- No communication between agents allowed

Not needed in V-learning

Guarantee for decentralized learning

Learning setup (Episodic PAC-RL model):

- "Episodic": Only access to game is ability to repeatedly sample *trajectories* (i.e., sequence of s_h, a_h) in *decentralized setting*
- "PAC RL": At end of interaction, output ϵ -CCE whp
- **Technical point**: Need to be able to *truncate* trajectories – we assume that trajectories are truncated at $H = \frac{\log_{\epsilon}^{1}}{1-\nu}$ steps
 - Our result holds in finite-horizon setting too (no need to truncate)

Environment

Episode 1: each player *i* chooses policy & sees $s_1, a_{i1}, r_i(s_1, \boldsymbol{a}_1), s_2, a_{i2}, r_i(s_2, \boldsymbol{a}_2), \dots$

Episode 2: each player *i* chooses policy & sees $s_1, a_{i1}, r_i(s_1, \boldsymbol{a}_1), s_2, a_{i2}, r_i(s_2, \boldsymbol{a}_2), \dots$

Episode 3: each player *i* chooses policy & sees $s_1, a_{i1}, r_i(s_1, \boldsymbol{a}_1), s_2, a_{i2}, r_i(s_2, \boldsymbol{a}_2), \dots$

Theorem [DGZ, '22]: There is a *decentralized* learning algorithm (SPoCMAR) that requires $\tilde{O}\left(\frac{S^3 \cdot \max\{A_i\}}{\epsilon \in [m]}\right)$ samples, polynomial time, and outputs an ϵ -nonstationary Markov CCE (whp).

Fact (folklore): ϵ -nonstationary CCE may be computed in poly time if stochastic game is **known**

• Ignore all steps after $H \coloneqq \frac{\log 1/\epsilon}{1-\gamma}$ steps (safe since they contribute $< \epsilon$ to value functions)

$$h = 1 \qquad h = 2 \qquad h = 3 = H$$

Fact (folklore): ϵ -nonstationary CCE may be computed in poly time if stochastic game is **known**

• Ignore all steps after $H \coloneqq \frac{\log 1/\epsilon}{1-\gamma}$ steps (safe since they contribute $< \epsilon$ to value functions)

• Construct functions $V_{i,h}: S \to \mathbb{R}$, policy $\pi_h: S \to \Delta(A)$ for h = H + 1, H, H - 1, ..., 1 inductively:

Base Case: $V_{i,H+1}(s) \leftarrow 0$ for all s, i

Fact (folklore): ϵ -nonstationary CCE may be computed in poly time if stochastic game is **known**

• Ignore all steps after $H \coloneqq \frac{\log 1/\epsilon}{1-\gamma}$ steps (safe since they contribute $< \epsilon$ to value functions)

• Construct functions $V_{i,h}: S \to \mathbb{R}$, policy $\pi_h: S \to \Delta(A)$ for h = H + 1, H, H - 1, ..., 1 inductively:

Base Case: $V_{i,H+1}(s) \leftarrow 0$ for all s, i

Inductive step:

- 1. Assume given $V_{i,h+1}: S \to \mathbb{R}$ (e.g., h = 2)
- 2. For each $s \in S$, $i \in [m]$, construct mapping $F_{is}: A \to \mathbb{R}$:

 $F_{is}(\boldsymbol{a}) \coloneqq r_i(s, \boldsymbol{a}) + \mathbb{E}_{s' \sim \mathbb{P}(\cdot|s, \boldsymbol{a})}[V_{i,h+1}(s')]$

3. Compute a ϵ -CCE of each $(F_{1s}, ..., F_{ms})$, and let that be $\pi_h(s) \in \Delta(A)$

Fact (folklore): ϵ -nonstationary CCE may be computed in poly time if stochastic game is **known**

• Ignore all steps after $H \coloneqq \frac{\log 1/\epsilon}{1-\gamma}$ steps (safe since they contribute $< \epsilon$ to value functions)

• Construct functions $V_{i,h}: S \to \mathbb{R}$, policy $\pi_h: S \to \Delta(A)$ for h = H + 1, H, H - 1, ..., 1 inductively:

Base Case: $V_{i,H+1}(s) \leftarrow 0$ for all s, i

Inductive step:

- 1. Assume given $V_{i,h+1}: S \to \mathbb{R}$ (e.g., h = 2)
- 2. For each $s \in S$, $i \in [m]$, construct mapping $F_{is}: A \to \mathbb{R}$:

 $F_{is}(\boldsymbol{a}) \coloneqq r_i(s, \boldsymbol{a}) + \mathbb{E}_{s' \sim \mathbb{P}(\cdot|s, \boldsymbol{a})}[V_{i,h+1}(s')]$

- 3. Compute a ϵ -CCE of each $(F_{1s}, ..., F_{ms})$, and let that be $\pi_h(s) \in \Delta(A)$
- 4. Let $V_{i,h}(s) \coloneqq \mathbb{E}_{\boldsymbol{a} \sim \pi_h(s)}[F_{is}(\boldsymbol{a})]$

Fact (folklore): ϵ -nonstationary CCE may be computed in poly time if stochastic game is **known**

• Ignore all steps after $H \coloneqq \frac{\log 1/\epsilon}{1-\gamma}$ steps (safe since they contribute $< \epsilon$ to value functions)

• Construct functions $V_{i,h}: S \to \mathbb{R}$, policy $\pi_h: S \to \Delta(A)$ for h = H + 1, H, H - 1, ..., 1 inductively:

- What to do if the game is not known?
 - Idea in V-learning: replace computation of CCE of games F_{is} with *no-regret learner*, update $V_{i,h}$ incrementally
 - Issue: due to interdependence between V-updates in V-learning, don't get Markov policy
- Our solution: use a combination of **multi-stage** algorithm and **policy cover** to allow us to compute a Markov (nonstationary) policy
 - These tools make it tricky to use UCB bonuses (as in V-learning)
 - So instead we use Rmax-type bonuses [*Brafman-Tennenholz, '02*], which leads to $\frac{1}{\epsilon^3}$ sample complexity (as opposed to the tight $\frac{1}{\epsilon^2}$)

• Initially: all states unvisited, $V_{i,H+1}(s) = 0$ for all s

- Initially: all states unvisited, $V_{i,H+1}(s) = 0$ for all s
- At each **stage**: some subset W of pairs (h, s) are "known", i.e., exists policy π^{hs} that visits (h, s) with nontrivial probability
 - Set of π^{hs} known as **policy cover**
- At each stage: for all $(h, s) \in W$, play π^{hs} so as to reach (h, s), then play *bandit no-regret learner* at (h, s), transition to s'
 - Reward for bandit learner: $V_{i,h+1}(s')$ function, computed inductively
- At end of stage: average rewards from bandit learner to compute $V_{ih}(s)$ for all $(h, s) \in W$
- What about $(h, s) \notin W$? $V_{ih}(s) \coloneqq H + 1 h$ (**Rmax bonuses**)

- Initially: all states unvisited, $V_{i,H+1}(s) = 0$ for all s
- At each **stage**: some subset W of pairs (h, s) are "known", i.e., exists policy π^{hs} that visits (h, s) with nontrivial probability
 - Set of π^{hs} known as **policy cover**
- At each stage: for all $(h, s) \in W$, play π^{hs} so as to reach (h, s), then play *bandit no-regret learner* at (h, s), transition to s'
 - Reward for bandit learner: $V_{i,h+1}(s')$ function, computed inductively
- At end of stage: average rewards from bandit learner to compute $V_{ih}(s)$ for all $(h, s) \in W$
- What about $(h, s) \notin W$? $V_{ih}(s) \coloneqq H + 1 h$ (**Rmax bonuses**)
- If bandit learner at (h, s) visits "unknown" state s' at step h + 1:
 - Can use it to compute a cover policy $\pi^{h+1,s'}$ (progress!)

- Initially: all states unvisited, $V_{i,H+1}(s) = 0$ for all s
- At each stage: some subset W of pairs (h, s) are "known", i.e., exists policy π^{hs} that visits (h, s) with nontrivial probability
 - Set of π^{hs} known as **policy cover**
- At each stage: for all $(h, s) \in W$, play π^{hs} so as to reach (h, s), then play *bandit no-regret learner* at (h, s), transition to s'
 - Reward for bandit learner: $V_{i,h+1}(s')$ function, computed inductively
- At end of stage: average rewards from bandit learner to compute $V_{ih}(s)$ for all $(h, s) \in W$
- What about $(h, s) \notin W$? $V_{ih}(s) \coloneqq H + 1 h$ (**Rmax bonuses**)
- If bandit learner at (h, s) visits "unknown" state s' at step h + 1:
 - Can use it to compute a cover policy $\pi^{h+1,s'}$ (progress!)
- Otherwise: policies from bandit learners can be concatenated to produce **output policy**, ^(C)

Conclusions/Open problems

Thank you for listening!

Summary of computation costs for finding CCE in general-sum stochastic games:

	Markov-Stationary	Markov-Nonstationary	Non-Markov
Computation	PPAD-hard [our paper]	[folklore]: Polynomial	[folklore]: Polynomial
Learning	PPAD-hard [our paper]	[LYBJ,'21]: Exponential (in #players) Polynomial [our paper]	[SMB,'21],[MB,'21],[JLWY,'21]: Polynomial (via V-learning)

Open questions:

- Can we get PPAD-hardness of finding ε-stationary CCE (non-perfect) for constant ε without assuming "PCP for PPAD conjecture"?
- Tighter sample complexity for upper bound?
- More natural/simpler algorithm instead of SPoCMAR?
- Extend upper bound results to settings with (e.g., linear) function approximation?

- 1. Maintain a set $\Pi^{cover} := \{\pi^{hs} : h \in [H], s \in S\}$ denoting **policy cover** (initially $\pi^{hs} = \bot$ for all h, s)
- 2. Maintain a set $W \subset [H] \times S$ of "well-visited" states (initialized to \emptyset)
- 3. For each stage $q \ge 1$:
 - Initialize $V_{i,H+1}(s) \leftarrow 0$ for all agents *i*, states *s*
 - For h = H, H 1, ..., 1:

"backwards induction" idea from known model setting

- A. Each player initializes an adversarial bandit no-regret learner at each state *s*
- B. For each non-null policy $\pi \in \Pi^{cover}$: choose actions according to π up to step h 1, then according to the bandit no-regret learners at step h
 - Sample a trajectory: $(s_1, a_1, \{r_{i1}\}_i, ..., s_{h+1}, a_{h+1}, \{r_{i,h+1}\}_i ...)$
 - If $(s_h, h) \in W$: update bandit instances at (s_h, h) with reward $r_{ih} + V_{i,h+1}(s_{h+1})$
 - If $(s_h, h) \notin W$: update bandit instances at (s_h, h) with reward H + 1 h (Rmax reward)
- C. Define $V_{ih}(s)$ for all s as average of rewards given to bandit instance at s
- Define $\tilde{\pi}^q$ as acting at each step h per the empirical average of the bandit instances in above procedure
- If $\tilde{\pi}^q$ mostly only visits states in W: **output** $\tilde{\pi}^q$, **terminate** O
- Else: for some "newly visited" state (h, s), set $\pi^{hs} \leftarrow \tilde{\pi}^{q}$, add (h, s) to W, continue with next stage