The Complexity of Markov
Equilibrium in Stochastic Games

Constantinos Daskalakis Noah Golowich Kaiqing Zhang

Reinforcement learning applications

* Involve multiple players! @

CHECK

POT $10,975

LEE SEDOL

« 00:00:27

* This talk: investigate some basic questions regarding
equilibrium computation and learning in multi-player
tabular RL environments (stochastic games)

Note: concurrent work by [Jin-Muthukumar-Sidford, ‘22] which proves some similar results

Main results: summary

1. Hardness result for computing stationary CCE in stochastic games
2. Decentralized algorithm for learning nonstationary CCE efficiently

Stochastic games: preliminaries

* Infinite-horizon discounted m-player stochasticgame G = (5,4, P, r,y, uw):
* S is a finite set of states
e A =A;X-+-XA,, isajoint action set (agent i € [m] has action set 4;)
 Denote joint actions in boldface, i.e., a = (a4, ...,a,,) € A
* P(s'|s,a), fors,s' €5, a € A, gives transition kernel

e r = (1y, ..., Ty) is tuple of reward functions, where 7;(s, a) gives
reward function of agent i

* ¥ € (0,1) is discount factor Given state s, choose
* u € A(S) is initial state distribution actions a; € A; Environment
® ° ®
Receive rewards 7;(s, @)
Transitionto s’ ~ P(: |s, a)

Given state s, choose
agjons a; € A; Environment

Nash equilbrium » B B &

Receive rewards 1;(s, a)
Transition to s’ ~ P(: |s, a)

* (Markov) stationary policy: mapping m: S = A(4)
* Value function for player i: (below a;, = (apq, ..., Apm))

Vln(S) = (1 o)/) . IE(SlraLSZlaZr"')N(P;n) z yh_l) 7ﬂl (Sh’ ah) | Sl =S
Lh=1 J

H L] n O m— 71-
* Also define: Vi (,Lt) " IES~[,L [Vi (S)] Product policy: m(s) € A(A;)X ---XA(A4,,) is
i a product distribution for all s

Definition: For € > O:
e €-apx stationary Nash equilibrium is a stationary product policy = so that for all i,
T, m_j
max V, (W) =V (W) <e.
- i /
Problem: for a game with a single state, e-stationary Nash is just e-Nash in a
normal-form game, which is PPAD-complete!

Given state s, choose
agjons a; € A; Environment

Coarse correlated equilibrium & & & %

Receive rewards 1;(s, a)
Transition to s’ ~ P(: |s, a)

* (Markov) stationary policy: mapping m: S = A(4)
* Value function for player i: (below a;, = (apq, ..., Apm))

Vln(s) = (1 o y) ']E(Sl,al,Sz,az,...)"’([P,ﬂ) z yh_l) 7ﬂl (Sh' ah) | Sl =S
Lh=1 J

* Alsodefine: V" (u) == Es,[V;"(s)]

Perhaps: expect Coarse correlated equilibrium (CCE)
to be tractable here (as it is in normal form games)

Gefinition: Fore > O:
* e-apx stationary CCE is a stationary policy so that for all players i,

max VT W) - V() < e

l

* e-apx perfect stationary CCE is a stationary policy i so that for all players i and all s,

max Vini’n‘i (s) =V (s) <e.

N Y

Background: complexity class PPAD

 Total search problems: solution (e.g., stationary CCE) always exists

* PPAD (“Polynomial Parity Arguments on Directed Graphs”):

* Roughly speaking: class consisting of total search problems which have a
polynomial-time reduction to the End-Of-The-Line problem

* End-Of-The-Line (EOTL) problem: given a directed graph G with
exponentially many vertices where each vertex has at most one
predecessor and successor, together with a source: find a sink!

orce @ T NG N

* (is specified succinctly by having a (poly-size) circuit return predecessor +
successor of each vertex

* PPAD-hard problems: as hard as EOTL (likely needs super-polynomial time)

/- e-stationary CCE is policy m so that for all i, \

PPAD-hardness of e s«
Sta t | O n a ry C C E * e-perfect stationary CCE is policy 7 so that for all i and all s,

, .
max Vin"n“ (s) =V (s) <e.
TT

\ l J
A

p
Theorem [Daskalakis-G-Zhang, ‘22]: For some constant € > 0, computing e-perfect

stationary CCE in 2-player stochastic games with discount factor y = 1/2 is PPAD-hard.
. J

" Theorem [Daskalakis-G-Zhang, ‘22]: For some constant € > 0, computing e-stationary CCE h
in 2-player stochastic games with discount factor y = 1/2 is PPAD-hard under the “PCP for
9 PPAD conjecture”. y
s A
Theorem [Daskalakis-G-Zhang, ‘22]: For some constant ¢ > 0, computing ¢ /n-stationary

CCE in 2-player, n-state stochastic games with discount factor y = 1/2 is PPAD-hard.
.)

* Larger y always harder: so get PPAD-hardness forall y = %

* Known [Deng-Li-Mguni-Wang-Yang, ‘21],[Jin-Muthukumar-Sidford, 22]: computing (perfect) stationary CCE is
in PPAD, so all problems above are PPAD-complete.

Concurrent work [Jin-Muthukumar-

Proof overview of hardness result | 22 etbelowtheorem o

|S|-player games (i.e., weaker result)

First step: consider turn-based stochastic games: special case where 1 player acts at each state

* Key point: CCE and Nash equilibria are equivalent in turn-based games

Theorem [Daskalakis-G-Zhang, ‘22]: For some constant € > 0, computing e-perfect stationary Nash
equilibrium in 2-player turn-based stochastic games with discount factor y = 1/2 is PPAD-hard.

Proof idea: Reduce from the (PPAD-hard) e-generalized circuit (GCircuit) problem:

ﬁefinition (e-Generalized circuit problem; informal): Given a circuit, i.e.,
collection of gates (G, each gate being one of the following:

(Weighted) summation gate g, Assignment gate g,

Comparison gate g,

X X
lifx >y
ax +
4 0ifx<y ¢
y y

Problem: find an assignment of real values to all wires of the circuit such that
@nstraints of all gates are satisfied up to t+¢

\

(parametrized by a, f € R) (parametrized by ¢ € {0,1})

X,y are
outputs from
other gates

/

Proof overview of hardness result: |S|-player games

* Known: Finding assignment to an e-GCircuit instance is PPAD-hard [Daskalakis-Golberg-
Papadimitriou, ‘06],[Chen-Deng-Teng,’09],[Rubinstein, ‘18]:

* Our proof: shows how to “simulate” each gate in a generalized circuit using O(1) statesin
a turn-based stochastic game where each state has 2 actions (i.e., 4; = {0,1})

* First establish the (easier) result where each state in the game is controlled by a different
player (as in [Jin-Muthukumar-Sidford, 22]; US€S ideas from [Daskalakis-Goldberg-Papadimitriou, ’06])

 Example: implement summation gate in a stochastic game:

Simulation in a stochastic game

Observation: since
(rewards not shown)

game is turn-based and
Summation gate g @ P(s;|w,0) Z% Pl 1) = 1 A; = {0,1}, stationary
..... 2w

(suppose a = f§ = %for simplicity): policy m: S = A(A) is
simply a mapping

) . @ P(shlw 0 Z% P(w]s,,0) = 1 m:S — [0,1]

X

SX+3Yy
27 27
g ' Lemma [ours; informal]: For any € > 0, exists €’ > 0 so that for any €'-
: : 1 1
stationary NE 7: S — [0,1], it holds that n(sg) = En(sf) + Eﬂ(Sh) T €.

Y

Proof overview of hardness result: 2-player games

Summation gate witha = f = 1;
all rewards not shown are O

* |ssue when trying to prove hardness for 2-player games: rewards from different
gadgets may conflict with one another!

* Example of conflict: try to assign all helper nodes “w” to one player, all non-helper
nodes to the other player

* Requirement that rw(sf, 1) = 2 above may conflict with requirement that (e.g.) rw(sf, 1) =
1 # 2 from some other weighted summation gate

 Solution: show how to “pre-process” any generalized circuit instance (using a notion
of “valid coloring” we introduce) to avoid conflicts
* Pre-processing uses the unary-to-binary and binary-to-unary constructions in [Rubinstein, ‘18]

Given state s, choose
o actiogs ag ~ 71 (- |s1) Environment

’ S
* How to get around PPAD-hardness: allow for ﬁ 'm Receﬁewardsri(sbal)
nonstationa ry CCE: Transition to s, ~ P(- |s1, @4)

What is computable?

* Nonstationary policy m is a collection T =

(1q, Ty, ...), Where each m;,: S = A(A) .
* Allow choice of actions to depend on the time
step
\ Given state sy, choose
actiops ap ~ (- [sy) Environment

Definition: For € > 0, an e-nonstationary coarse * ,ﬁ‘ i\ @
correlated equilibrium (CCE) is a nonstationary |

. . Receive rewards 1;(sy, ap)
policy m so that for all players i, Transition to s, ~ P(: |s, @)

!/
T, T
max Vot (u) = V() < e

l
[
_ %
Nonstationary CCE same as stationary CCE, except policy no
longer stationary

Given state s, choose
o actiogs ag ~ 71 (- |s1) Environment

T4 S
Definition: For € > 0, an e-nonstationary Recelve rewards 1i(s1, a1)

o i ransition to s, ~ P(- [s1,a41)
coarse correlated equilibrium (CCE) is a
nonstationary policy i so that for all players

i, .

max I/;ni’n‘i (W) =V <e.

!

e
K / Given state s, choose

. actiogs @y, ~ w, (- |sp) Environment

L 4
* Fact (folklore): e-nonstationary CCE may be ﬂ 'H‘ 'ﬁ\ @

computed in poly time if stochastic game is Receive rewards 7;(sy, @)
Transition to s, ~ P(- |sp, ap)
known

* How? Simply use backwards induction and

log 1 , .
ogl/e steps (more detail later) .

_y [J

What is computable?

truncate after

Can we learn nonstationary CCE
(i.e., if the stochastic game is unknown)?

Prior work -- 2 groups of work:

1. Requires exponential time in number of players [Liu-Yu-Bai-Jin,’21]
* Curse of multi-agents
* Algorithm is model-based (learn entire transitions P(:|s, a))
* Does output Markov policy

2. Is poly-time, but does not learn a Markov policy [Song-Mei-
Bai,’21],[Jin-Liu-Wang-Liu,’21],[Mao-Basar,’21’]

* V-learning algorithm — avoids curse of multi-agents using regret minimization
algorithm at each state

* Policies output by V-learning are history-dependent: is complicated function
of the policies played by bandit learners in the course of the algorithm

* |s decentralized...

Additional desideratum: decentralized algorithms

Decentralized model:

* Agents only see states, their own actions, and their own rewards

e Agents have access to common randomness R (used to correlate their actions during course
of algorithm)

* No communication between agents allowed

Not needed in V-learning

Choose action

R: ; Choose action rﬁ
a; (using R) Choose action

a, (using R) Environment

Py Py ® 4; (using R)
010010111101010 A A A
010101010001010 Agent 1 Agent 2 Agent 3
10101001010100... 1] 1] il

Transitionto s’ ~ P(- |s, a)

p /
Observe s’, Observe s, Observe s, (fora = (a4, a,, as))

reward 1 (s, @) ' reward 1, (s, a) reward 13(s, a)

* “Episodic”: Only access to game is ability to

* “PAC RL”: At end of interaction, output €-CCE whp

Guarantee for decentralized learning
Learning setup (Episodic PAC-RL model): S

re

Environment

peatedly sample trajectories (i.e., sequence of

Sh, ah) in decentralized setting Episode 1: each player i chooses policy & sees

S1, i1, 1i(S1, 1), 52, Ajp, 1i(So, @3), ...

* Technical point: Need to be able to truncate Episode 2: each player i chooses policy & sees

trajectories — we assume that trajectories are

tr

e QOur result holds in finite-horizon setting too

S1, i1, 1 (51, @1), 52, Ajp, 1;(S2, A7), ...

logl
uncated at H = - €

(no need to truncate)

-

-

\
Theorem [DGZ, ‘22]: There is a decentralized learning algorithm (SPoCMAR) that requires
_ (S3-max{A;}
0 (63.1(61["_11/)10> samples, polynomial time, and outputs an e-nonstationary Markov CCE (whp).
)

Warm-up: computing CCE if game is known

{ Fact (folklore): e-nonstationary CCE may be computed in poly time if stochastic game is known J

log1/e

* |Ignore all steps after H := steps (safe since they contribute < € to value functions)

h=1 h=2 h=3=H

States —

Warm-up: computing CCE if game is known

{ Fact (folklore): e-nonstationary CCE may be computed in poly time if stochastic game is known J

log1/e

* |Ignore all steps after H := steps (safe since they contribute < € to value functions)

* Construct functions V; 4: S — R, policy my: S = A(4)
forh=H+1,H,H—1,...,1inductively:

‘ Base Case:

Vig+1(s) « 0 foralls,i

h=1 h=2 h=3=H

States —

Warm-up: computing CCE if game is known

{ Fact (folklore): e-nonstationary CCE may be computed in poly time if stochastic game is known J

log1/e

* |Ignore all steps after H := steps (safe since they contribute < € to value functions)

* Construct functions V; 4: S — R, policy my: S = A(4)
forh=H+1,H,H—1,..,1 inductively:

‘ Base Case:

Vig+1(s) « 0 foralls,i

h=1 h=2 h=3=H

Inductive step:
1. AssumegivenV;,,1:5 > R(e.g., h = 2)
2. Foreachs € §,i € [m], construct mapping
Fis: A - R

Fis(a) = ri(s,a) + Eg _p(js,0)[Vin+1(s')]
3. Compute a €-CCE of each (Fyg, ..., F,;5), and let
that be ,,(s) € A(4)

States —

Warm-up: computing CCE if game is known

{ Fact (folklore): e-nonstationary CCE may be computed in poly time if stochastic game is known J

log1/e

* |Ignore all steps after H := steps (safe since they contribute < € to value functions)

* Construct functions V; 4: S — R, policy my: S = A(4)
forh=H+1,H,H—1,...,1inductively:

‘ Base Case:

Vig+1(s) « 0 foralls,i

h=1 h=2 h=3=H

Inductive step:
1. AssumegivenV;,,1:5 > R(e.g., h = 2)
2. Foreachs € §,i € [m], construct mapping
Fis: A - R

Fis(a) = ri(s,a) + Eg _p(js,0)[Vin+1(s')]

3. Compute a €-CCE of each (Fyg, ..., F,;5), and let
that be ,,(s) € A(4)

4. Let Vi,h(s) =]Ea~77:h(s) [Fis (a)]

States —

Warm-up: computing CCE if game is known

{ Fact (folklore): e-nonstationary CCE may be computed in poly time if stochastic game is known J

log1/e

* |Ignore all steps after H := steps (safe since they contribute < € to value functions)

* Construct functions V; 4: S — R, policy my: S = A(4)
forh=H+1,H,H—1,...,1inductively:

‘ Base Case:

Vig+1(s) « 0 foralls,i

h=1 h=2 h=3=H

Actually: use
bandit no-regret
Inductive step: learner here
1. AssumegivenV;,,1:5 > Reg, h=1)
2. Foreachs € §,i € [m], construct mapping
Fis: A - R
Fis(a) = ri(s,a) + Eg p(is,a) [Vin+1(s")]
3. Compute a €-CCE of each (Fyg, ..., F,;5), and let

that be ,,(s) € A(4)
4. LetVip(s) = Eqop,(s[Fis(a)] Output: 1t := (74, ..., TTy)

States —

SPoCMAR: Stage-Based Policy Cover for Multi-
Agent Learning with Rmax

* What to do if the game is not known?

* |Idea in V-learning: replace computation of CCE of games F;; with no-regret learner,
update V; , incrementally

* Issue: due to interdependence between V-updates in V-learning, don’t get Markov
policy

* Our solution: use a combination of multi-stage algorithm and policy cover
to allow us to compute a Markov (nonstationary) policy

* These tools make it tricky to use UCB bonuses (as in V-learning)
e So instead we use Rmax-type bonuses [Brafman-Tennenholz, ‘02], which leads to 6—13

sample complexity (as opposed to the tight Eiz)

SPoCMAR: Stage-Based Policy Cover for Multi-
Agent Learning with Rmax

* Initially: all states unvisited, V; y+1(s) = O forall s
h=1 h=2 h=3=H

States —

SPoCMAR: Stage-Based Policy Cover for Multi-
Agent Learning with Rmax

States —

h=1

h =2

h=3=H

Initially: all states unvisited, V; y+1(s) = 0 forall s
At each stage: some subset I/ of pairs (h, s) are "known”, i.e.,
exists policy " that visits (h, s) with nontrivial probability

« Set of /¥ known as policy cover
At each stage: for all (h, s) € W, play =™ so as to reach (h, s),
then play bandit no-regret learner at (h, s), transition to s’

* Reward for bandit learner: V; .1 (s") function, computed

inductively

At end of stage: average rewards from bandit learner to compute
Vin(s) forall (h,s) € W
What about (h,s) € W? V;,(s) == H + 1 — h (Rmax bonuses)

SPoCMAR: Stage-Based Policy Cover for Multi-
Agent Learning with Rmax

States —

h=1

h =2

h=3=H

Initially: all states unvisited, V; y+1(s) = 0 forall s
At each stage: some subset I/ of pairs (h, s) are "known”, i.e.,
exists policy " that visits (h, s) with nontrivial probability
« Set of /¥ known as policy cover
At each stage: for all (h, s) € W, play =™ so as to reach (h, s),
then play bandit no-regret learner at (h, s), transition to s’
* Reward for bandit learner: V; .1 (s") function, computed
inductively
At end of stage: average rewards from bandit learner to compute
Vin(s) forall (h,s) € W
What about (h,s) € W? V;,(s) == H + 1 — h (Rmax bonuses)
If bandit learner at (h, s) visits “unknown” state s’ at step h + 1:
e Can use it to compute a cover policy 7"t (progress!)

SPoCMAR: Stage-Based Policy Cover for Multi-
Agent Learning with Rmax

States —

h=1

h =2

h=3=H

Initially: all states unvisited, V; y+1(s) = 0 forall s
At each stage: some subset I/ of pairs (h, s) are "known”, i.e.,
exists policy " that visits (h, s) with nontrivial probability
« Set of /¥ known as policy cover
At each stage: for all (h, s) € W, play =™ so as to reach (h, s),
then play bandit no-regret learner at (h, s), transition to s’
* Reward for bandit learner: V; .1 (s") function, computed
inductively
At end of stage: average rewards from bandit learner to compute
Vin(s) forall (h,s) € W
What about (h,s) € W? V;,(s) == H + 1 — h (Rmax bonuses)
If bandit learner at (h, s) visits “unknown” state s’ at step h + 1:
e Can use it to compute a cover policy 7"t (progress!)
Otherwise: policies from bandit learners can be concatenated to
produce output policy, ©

: . .
COnC'LISIOﬂS/Open problems Thank you for listening!

Summary of computation costs for finding CCE in general-sum stochastic games:

| Markov-stationary | Markov-Nonstationary _| Non-Markov _____________

Computation PPAD-hard [our paper] [folklore]: Polynomial [folklore]: Polynomial
Learning PPAD-hard [our paper] [LYBJ,/21]: Exponential (in [SMB,’21],[MB,21],[JLWY,'21]: Polynomial
#players) (via V-learning)

Polynomial [our paper]

Open questions:

e Can we get PPAD-hardness of finding e-stationary CCE (non-perfect) for constant e
without assuming “PCP for PPAD conjecture”?

e Tighter sample complexity for upper bound?

* More natural/simpler algorithm instead of SPoCMAR?

* Extend upper bound results to settings with (e.g., linear) function approximation?

SPoCMAR: Stage-Based Policy Cover for Multi-
Agent Learning with Rmax

1. Maintain a set I1°°V®" := {"S: h € [H], s € S} denoting policy cover (initially 75 = L for all h, s)
2. Maintain aset W c [H]XS of "well-visited” states (initialized to @)

3. Foreachstageqg = 1:

* Initialize V; 1.1 (s) < O for all agents i, states s “backwards induction” idea from
e Forh=HH-1,..,1:) known model setting

A. Each player initializes an adversarial bandit no-regret learner at each state s

B. For each non-null policy T € IT°V¢": choose actions according to 7 up to step h — 1, then
according to the bandit no-regret learners at step h

* Sample a trajectory: (1, @y, {Ti1}ir ooe» Shatr Apats {ri,hﬂ}i ..)
* If (sp, h) € W: update bandit instances at (sp, h) with reward 7, + V; 141 (Sp+1)
* If (s, h) € W: update bandit instances at (s, h) with reward H + 1 — h (Rmax reward)
C. Define V;,(s) for all s as average of rewards given to bandit instance at s
* Define 741 as acting at each step h per the empirical average of the bandit instances in above procedure

 If 79 mostly only visits states in W: output 779, terminate ©
* Else: for some “newly visited” state (h, s), set t*S « 79, add (h, s) to W, continue with next stage

