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Motivation: closure properties for online learning

* Online binary prediction in the adversarial setting: {fift‘}ifg::P,ag';ha'ev's'“wa”Z' 09l

Nature: determine
adversarially feature x, (e.g.,
vitals) and label ¢; (e.g., X1 2. =1 Xy £, =1 X £r =0
whether patient sick) each day
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(perhaps using randomness) ) t<T
—minz )" [£, = h(x)|
& 1 1 1 t<T
Experts: functions h:
given x;, output a & 0 1 0
label h(x;)

("sick” or “healthy”) & 1 0 0



Motivation: closure properties for online learning

* What happens when we combine predictions of experts?

Nature: X1 4=1 X2 2 =1 XT tr =0
1 1 i Learner’s goal:
minimize regret R:
@,
h- Timet
v \ 4 v 4 LA v v 1 D
RT = Tz ]El‘gt - ’gtl
, D — D D t<T
Learner: {1 =1 £, =0 £r =0 1
—minz »" 12, = h(x,)
t<T
- ravé& 1 0
Add all pairwise-
ORs of experts to & v Eﬁ 1 1 1
the class
& V é] 1 1 1 Regret R+ now harder
to bound since
& 1 1 1 minimizing over larger
class of experts h
Experts: functions h & 0 1 0 (but small R means
& 1 0 0 more)



Informal overview of results: tight closure bounds

* Fix any k-wise aggregation rule for experts: function {0,1}* — {0,1}
* e.g., k-wise OR, k-wise AND, majority

 What is the best regret bound for the class consisting of all possible k-
wise aggregations of experts, in terms of that for the original class?

[ Theorem (informal): regret blows up by at most factor k log k (& this is tight). }

* Prior work [Alon-Beimel-Moran-Stemmer, ‘20]: blowup of < 22¥k?

* We also show: nearly tight upper bound on threshold dimension of
class of k-wise aggregations of experts
* Exponential improvement (in k) from [Alon-Beimel-Moran-Stemmer, ‘20]



Characterization of optimal regret

e goal- 1 1
Learner’s goal: o e :
[ minimize regret Ry: } Ry = F z IE‘:|£t o £t| o m}%nf E [€¢ — h(xt)l
t<T t<T

* Recall we are given a known set of experts (hypotheses) h
 Call this set of all experts H

* Given arbitrary H, what is the optimal regret bound Ry for any learner?

Q(/Ldim(H) /T) < R;y< 0(yLdim(H) / T)

\ ) \ )
| |

[Ben-David-Pal-Shalev-Shwartz, ‘09] [Alon-Ben-Eliezer-Dagan-Moran-Naor-Yogev, 21]
[Ben-David-Pal-Shalev-Shwartz, ‘09]: O(y/Ldim(H) log T / T)

* Ldim(H) represents Littlestone dimension: a combinatorial parameter



Littlestone dimension: definition

Gefn: For a binary tree with all internal nodes labeled bh
elements of X, edges labeled by {0,1}:
* |tisshattered by H if for each leaf £ there is some
hy, € H which labels all nodes on the root-to-leaf path
for £ according to the labels on the edges.
* E.g., forthe green leaf: need hp(x1) = 0, hp(xp1) =

K 1, hp(x3,) = 1. /

{Defn: Littlestone dimension of hypothesis class H, denoted Ldim(H), is largest d so that J

there exists tree of depth d shattered by H.

* Other applications beyond online learning: Hypotheses classes H with a private PAC
learning algorithm achieving error 0(1) are exactly those with finite Littlestone
dimension [Alon-Livni-Malliaris-Moran “19] [Bun-Livni-Moran 20]



Examples: finite Littlestone dimension classes

* Any finite class H has Littlestone dimension Ldim(H) < log(|H|)

* Class of threshold functions Hy,. g on X = {1, 2, ..., 29} has Ldim(H) = d
» 2% such thresholds; threshold i evaluatesto 1onj € X iff i < j

Green leaf corresponds to threshold

Example of shattered tree for _ _
which evaluatestolonx iff x < 3

d = 3:

* For general d: the range query (binary search) tree on {1, ..., 2%} shows
Ldim(Hpnrq) = d



Results: closure properties for Littlestone dimension

e Dataspace X, k € N
* Binary hypothesis classes Hy, ..., H, (i.e., consisting of h : X — {0,1})

o Aggregation rule G : {0’1}k - {01 k-wise aggregation via G ]

e Defn: G(Hl, ""Hk) = {x > G(hl(X), ,hk(x)) hl S Hl' ey hk (S Hk}
Theorem (closure property for Littlestone dimension): Suppose Ldim(H;) < d for
all 1 < i < k.Then Ldim(G(Hy, ..., Hy)) < 0(d - klogk).

* Previous work: 6(22kk2d) [Alon-Beimel-Moran-Stemmer, ‘20]
* Proof: 0-covering number for trees (similar to closure bound for VCdim)

* Let Gory ¢ {0,1}* - {0,1} be the k-wise OR function:
/Theorem (lower bound; tightness of above): There is a class H with:
1. Ldim(H) < d.

2. Ldim (Gori(H, ..., H)) = O(d - klogk). )

~




Threshold dimension: definition

* Fix X, and H consisting of h : X = {0,1}.

hg

(. N

Defn: Threshold dimension of hypothesis class H,
denoted Tdim(H), is largest d so that there exists:
* Xq,..,Xq €EX;
* hq,..,hg € H;
so that hi(xj) =1[j <i]foralll <i,j <d.

Motivation:

* Threshold dimension used to show finiteness of Ldim(H) is necessary for H to be

privately PAC learnable

h,

h

/

X1 X2

* |n particular, following is used [Shelah, ‘78]: for any H,

Ldim(H) = |log Tdim(H)]|,

Tight: class of thresholds on {1, ..., Zd} has
Ldim = d, Tdim = 24

Tdim(H) = |log Ldim(H)]|

[ Unknown if tight }

Xd



Results: closure properties for threshold dimension

Recall: for binary hypothesis classes Hy, ..., Hy,:
G(Hl, ""Hk) = {x > G(hl(X), ,hk(X)) h1 S Hl’ "'lhk (S Hk}

Theorem (closure property for threshold dimension): Suppose Tdim(H;) < d for
all 1 <i < k.Then Tdim(G (Hy, ..., Hy)) < 20(@klogk),

. ak-ak
*  Previous work: upper bound of 244%'4™ [Alon-Beimel-Moran-Stemmer, ‘20]

4 N

Theorem (lower bound; near-tightness of above): For any k € N, there are classes
Hy, ..., H, and a function G : {0,1}* - {0,1} so that:
1. Tdim(H;) <dforalll <i <k.

2. Tdim(G(Hy, ..., Hy)) = 2@,

/

e Previous work: lower bound of 2@ [alon-Beimel-Moran-Stemmer, ‘20]



Proof of upper bound (& improving the lower bound)
* For N € N, let Ky be complete graph on N vertices

Defn: For r,c € N, define Ramsey number R.(r) as minimum N € N so that for any coloring
of edges of Ky with c colors, there exists a monochromatic (1-colored) clique of size r.

“Clique” is complete graph (subgraph of Ky)

I

e.g., orange triangle is monochromatic clique of size 3 J /

 Ramsey’s theorem: R.(r) < 27¢log¢

for some a(k) — oo, then:

limsup e Re(2d + 1)Y/€ = oo

Proof of closure upper bound: upper bound on
R.(r) implies upper bound on Tdim(G(Hl, . Hk))
Contrapositive: if we have Hy, ..., Hj, with, Vi,
Tdim(H;) < d but Tdim(G (Hy, ..., Hy)) = 2k«

-

N

~
Thm (upper bound): Suppose Tdim(H;) < d for
i <k.Then Tdim(G(Hy, ..., Hy)) < 20@klogk),
J
Ghm (lower bound): There are classes Hy, ..., Hy, h
and G : {0,1}* - {0,1} so that:
1. Tdim(H;) <dforalll <i<k.
\2 lem(G(Hl, e Hk)) = Zﬂ(dk). J

(Would resolve long-standing open problem in Ramsey theory) = lower bound above (probably) hard to improve



Summary: overview of results

Throughout: d defined as upper bound on Littlestone/threshold dimension on Hy, ..., Hy

Littlestone dimension 0] (d - k log k) 'Q(d -k log k)

Q(d-k)
Threshold dimension 20(d-k log k) 2

Thank you for listening!



