Near-tight closure bounds for the Littlestone and threshold dimensions

Badih Ghazi¹ Noah Golowich² Ravi Kumar¹ Pasin Manurangsi¹

¹Google Research

²MIT; work done while interning at Google Research

Motivation: closure properties for online learning

• Online binary prediction in the adversarial setting: [Ben-David-Pal-Shalev-Shwartz, '09]

Nature: determine adversarially **feature** x_t (e.g., vitals) and **label** ℓ_t (e.g., whether patient sick) each day

Time *t*

$$\hat{\ell}_2 = 0$$

Learner: knows class of experts; given x_t , predict a label ℓ_t (perhaps using randomness)

given x_t , output a label $h(x_t)$ ("sick" or "healthy")

Learner's goal: minimize regret R_T :

$$R_T \coloneqq \frac{1}{T} \sum_{t \le T} \mathbb{E} |\hat{\ell}_t - \ell_t|$$
$$- \min_{h} \frac{1}{T} \sum_{t \le T} |\ell_t - h(x_t)|$$

Motivation: closure properties for online learning

• What happens when we combine predictions of experts?

Learner's goal:

minimize regret R_T :

$$R_{T} \coloneqq \frac{1}{T} \sum_{t \le T} \mathbb{E} |\hat{\ell}_{t} - \ell_{t}|$$
$$- \min_{h} \frac{1}{T} \sum_{t \le T} |\ell_{t} - h(x_{t})|$$

Regret R_T now harder to bound since minimizing over larger class of experts h (but small R_T means more)

Informal overview of results: tight closure bounds

- Fix any k-wise aggregation rule for experts: function $\{0,1\}^k \to \{0,1\}$
 - e.g., k-wise OR, k-wise AND, majority
- What is the best regret bound for the class consisting of all possible kwise aggregations of experts, in terms of that for the original class?

Theorem (informal): regret blows up by at most factor $k \log k$ (& this is tight).

- Prior work [Alon-Beimel-Moran-Stemmer, '20]: blowup of $\leq 2^{2k}k^2$
- We also show: nearly tight upper bound on threshold dimension of class of k-wise aggregations of experts
 - Exponential improvement (in k) from [Alon-Beimel-Moran-Stemmer, '20]

Characterization of optimal regret

Learner's goal: minimize regret R_T :

$$\mathbf{R}_{T} \coloneqq \frac{1}{T} \sum_{t \le T} \mathbb{E} |\hat{\ell}_{t} - \ell_{t}| - \min_{h} \frac{1}{T} \sum_{t \le T} |\ell_{t} - h(x_{t})|$$

- Recall we are given a known set of experts (hypotheses) h
 - Call this set of all experts H
- Given arbitrary H, what is the optimal regret bound R_T for any learner?

$$\Omega(\sqrt{\text{Ldim}(H)/T}) \leq R_T \leq O(\sqrt{\text{Ldim}(H)/T})$$
[Ben-David-Pal-Shalev-Shwartz, '09] [Alon-Ben-Eliezer-Dagan-Moran-Naor-Yogev, '21] [Ben-David-Pal-Shalev-Shwartz, '09]: $O(\sqrt{\text{Ldim}(H)\log T/T})$

• Ldim(H) represents Littlestone dimension: a combinatorial parameter

Littlestone dimension: definition

Defn: For a binary tree with all internal nodes labeled by elements of X, edges labeled by $\{0,1\}$:

- It is **shattered** by H if for each leaf ℓ there is some $h_{\ell} \in H$ which labels all nodes on the root-to-leaf path for ℓ according to the labels on the edges.
- E.g., for the green leaf: need $h_{\ell}(x_1) = 0$, $h_{\ell}(x_{21}) = 1$, $h_{\ell}(x_{32}) = 1$.

Defn: Littlestone dimension of hypothesis class H, denoted Ldim(H), is largest d so that there exists tree of depth d shattered by H.

• Other applications beyond online learning: Hypotheses classes H with a private PAC learning algorithm achieving error o(1) are exactly those with finite Littlestone dimension [Alon-Livni-Malliaris-Moran '19] [Bun-Livni-Moran '20]

Examples: finite Littlestone dimension classes

- Any finite class H has Littlestone dimension $Ldim(H) \leq log(|H|)$
- Class of threshold functions $H_{\mathrm{thr},d}$ on $X=\{1,2,\ldots,2^d\}$ has $\mathrm{Ldim}(H)=d$
 - 2^d such thresholds; threshold i evaluates to 1 on $j \in X$ iff $i \le j$

• For general d: the range query (binary search) tree on $\{1, ..., 2^d\}$ shows $\mathrm{Ldim}(H_{\mathrm{thr},d}) \geq d$

Results: closure properties for Littlestone dimension

- Data space $X, k \in \mathbb{N}$
- Binary hypothesis classes H_1, \dots, H_k (i.e., consisting of $h: X \to \{0,1\}$)
- Aggregation rule $G: \{0,1\}^k \to \{0,1\}$ k-wise aggregation via G
- Defn: $G(H_1, ..., H_k) := \{x \mapsto G(h_1(x), ..., h_k(x)) : h_1 \in H_1, ..., h_k \in H_k \}$

Theorem (closure property for Littlestone dimension): Suppose $\mathrm{Ldim}(H_i) \leq d$ for all $1 \leq i \leq k$. Then $\mathrm{Ldim}\big(G(H_1, \dots, H_k)\big) \leq O(d \cdot k \log k)$.

- Previous work: $\tilde{O}(2^{2k}k^2d)$ [Alon-Beimel-Moran-Stemmer, '20]
- Proof: 0-covering number for trees (similar to closure bound for VCdim)
- Let $G_{OR,k}: \{0,1\}^k \to \{0,1\}$ be the k-wise OR function:

Theorem (lower bound; tightness of above): There is a class *H* with:

- 1. Ldim $(H) \leq d$.
- 2. Ldim $(G_{OR,k}(H, ..., H)) \ge \Omega(d \cdot k \log k)$.

Threshold dimension: definition

• Fix X, and H consisting of $h: X \to \{0,1\}$.

Defn: Threshold dimension of hypothesis class H, denoted Tdim(H), is largest d so that there exists:

- $x_1, \dots, x_d \in X$;
- $h_1, ..., h_d \in H$;

so that $h_i(x_i) = \mathbf{1}[j \le i]$ for all $1 \le i, j \le d$.

Motivation:

- Threshold dimension used to show finiteness of $\operatorname{Ldim}(H)$ is necessary for H to be privately PAC learnable
- In particular, following is used [Shelah, '78]: for any H, $Ldim(H) \ge \lfloor \log Tdim(H) \rfloor, \qquad Tdim(H) \ge \lfloor \log Ldim(H) \rfloor$

Tight: class of thresholds on $\{1, ..., 2^d\}$ has Ldim = d, Tdim = 2^d

Unknown if tight

Results: closure properties for threshold dimension

Recall: for binary hypothesis classes H_1, \dots, H_k :

$$G(H_1, ..., H_k) := \{x \mapsto G(h_1(x), ..., h_k(x)) : h_1 \in H_1, ..., h_k \in H_k \}$$

Theorem (closure property for threshold dimension): Suppose $\mathrm{Tdim}(H_i) \leq d$ for all $1 \leq i \leq k$. Then $\mathrm{Tdim}(G(H_1, \dots, H_k)) \leq 2^{O(d \cdot k \log k)}$.

• Previous work: upper bound of $2^{d\cdot 4k\cdot 4^k}$ [Alon-Beimel-Moran-Stemmer, '20]

Theorem (lower bound; near-tightness of above): For any $k \in \mathbb{N}$, there are classes H_1, \dots, H_k and a function $G : \{0,1\}^k \to \{0,1\}$ so that:

- 1. $Tdim(H_i) \le d$ for all $1 \le i \le k$.
- 2. $\operatorname{Tdim}(G(H_1, \dots, H_k)) \ge 2^{\Omega(dk)}$.
 - Previous work: lower bound of $2^{\Omega(d)}$ [Alon-Beimel-Moran-Stemmer, '20]

Proof of upper bound (& improving the lower bound)

• For $N \in \mathbb{N}$, let K_N be complete graph on N vertices

Defn: For $r, c \in \mathbb{N}$, define Ramsey number $R_c(r)$ as minimum $N \in \mathbb{N}$ so that for any coloring of edges of K_N with c colors, there exists a monochromatic (1-colored) clique of size r.

"Clique" is complete graph (subgraph of K_N) e.g., orange triangle is monochromatic clique of size 3

- Ramsey's theorem: $R_c(r) \leq 2^{r \cdot c \log c}$
- Proof of closure upper bound: upper bound on $R_c(r)$ implies upper bound on $Tdim(G(H_1, ..., H_k))$
- Contrapositive: if we have $H_1, ..., H_k$ with, $\forall i$, $Tdim(H_i) \leq d$ but $Tdim(G(H_1, ..., H_k)) \geq 2^{k \cdot \alpha(k)}$ for some $\alpha(k) \to \infty$, then: $\limsup_{c \to \infty} R_c (2d+1)^{1/c} = \infty$

Thm (upper bound): Suppose $\operatorname{Tdim}(H_i) \leq d$ for $i \leq k$. Then $\operatorname{Tdim}(G(H_1, ..., H_k)) \leq 2^{O(d \cdot k \log k)}$.

Thm (lower bound): There are classes $H_1, ..., H_k$ and $G : \{0,1\}^k \to \{0,1\}$ so that:

- 1. Tdim $(H_i) \le d$ for all $1 \le i \le k$.
- 2. $\operatorname{Tdim}(G(H_1, ..., H_k)) \ge 2^{\Omega(dk)}$.

(Would resolve long-standing open problem in Ramsey theory) \Rightarrow lower bound above (probably) hard to improve

Summary: overview of results

Throughout: d defined as upper bound on Littlestone/threshold dimension on H_1, \ldots, H_k

	Upper bound	Lower bound (there exist G and H_1,\ldots,H_k , so that we can lower bound $\dim(G(H_1,\ldots,H_k))$
Littlestone dimension	$O(d \cdot k \log k)$	$\Omega(d\cdot k\log k)$
Threshold dimension	$2^{O(d \cdot k \log k)}$	$2^{\Omega(d\cdot k)}$

Thank you for listening!