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Motivation: closure properties for online learning
• Online binary prediction in the adversarial setting:

Time !
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Learner: knows class of experts; 
given "!, predict a label 'ℓ"

(perhaps using randomness)
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[Ben-David-Pal-Shalev-Shwartz, ‘09]
[Littlestone, ‘88]



Motivation: closure properties for online learning
• What happens when we combine predictions of experts?

Time !

Nature: !!

Experts: functions ℎ
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Learner: "ℓ! = 1 "ℓ" = 0 "ℓ# = 0
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Add all pairwise-
ORs of experts to 

the class
Regret 5% now harder 

to bound since 
minimizing over larger

class of experts ℎ
(but small 5% means 

more)



Informal overview of results: tight closure bounds

• Fix any !-wise aggregation rule for experts: function 0,1 ! → {0,1}
• e.g., !-wise OR, !-wise AND, majority

• What is the best regret bound for the class consisting of all possible (-
wise aggregations of experts, in terms of that for the original class?

• Prior work [Alon-Beimel-Moran-Stemmer, ‘20]: blowup of ≤ 2"!!"

• We also show: nearly tight upper bound on threshold dimension of 
class of !-wise aggregations of experts
• Exponential improvement (in !) from [Alon-Beimel-Moran-Stemmer, ‘20]

Theorem (informal): regret blows up by at most factor ! log ! (& this is tight).



Characterization of optimal regret

• Recall we are given a known set of experts (hypotheses) ℎ
• Call this set of all experts "

• Given arbitrary ,, what is the optimal regret bound -# for any learner?

Ω( Ldim , / 5) ≤ 7$≤ 8( Ldim , / 5)

• Ldim(,) represents Littlestone dimension: a combinatorial parameter

Learner’s goal: 
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[Alon-Ben-Eliezer-Dagan-Moran-Naor-Yogev, ‘21]
[Ben-David-Pal-Shalev-Shwartz, ‘09]: ;( Ldim > log , / ,)

[Ben-David-Pal-Shalev-Shwartz, ‘09]



Littlestone dimension: definition

• Other applications beyond online learning: Hypotheses classes " with a private PAC 
learning algorithm achieving error 2(1) are exactly those with finite Littlestone
dimension [Alon-Livni-Malliaris-Moran ‘19] [Bun-Livni-Moran ‘20]

Defn: Littlestone dimension of hypothesis class ", denoted Ldim("), is largest 7 so that 
there exists tree of depth 7 shattered by ".
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Defn: For a binary tree with all internal nodes labeled by 
elements of 8, edges labeled by 0,1 :
• It is shattered by " if for each leaf ℓ there is some 
ℎℓ ∈ " which labels all nodes on the root-to-leaf path 
for ℓ according to the labels on the edges.

• E.g., for the green leaf: need ℎℓ 1C = 0, ℎℓ 1DC =
1, ℎℓ 1ED = 1.



Examples: finite Littlestone dimension classes
• Any finite class , has Littlestone dimension Ldim , ≤ log( , )
• Class of threshold functions ,%&',) on < = {1, 2, … , 2)} has Ldim , = ?
• 2F such thresholds; threshold > evaluates to 1 on ? ∈ 8 iff > ≤ ?

• For general 7: the range query (binary search) tree on {1, … , 2F} shows 
Ldim "GHI,F ≥ 7
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Example of shattered tree for 
O = 3:

Green leaf corresponds to threshold 
which evaluates to 1 on " iff " ≤ 3



Results: closure properties for Littlestone dimension
• Data space <, ! ∈ ℕ
• Binary hypothesis classes ,*, … , ,! (i.e., consisting of ℎ ∶ < → {0,1})
• Aggregation rule C ∶ 0,1 ! → {0,1}
• Defn: C ,*, … , ,! ≔ E ↦ C ℎ* E ,… , ℎ! E : ℎ* ∈ ,*, … , ℎ! ∈ ,!

Theorem (closure property for Littlestone dimension): Suppose Ldim )Q ≤ + for 
all 1 ≤ - ≤ !. Then Ldim . )C, … , )R ≤ 1(+ ⋅ ! log !).

Theorem (lower bound; tightness of above): There is a class ) with:
1. Ldim ) ≤ +.
2. Ldim .ST,R ),… ,) ≥ Ω(+ ⋅ ! log !).

• Previous work: H8(2"!!"?) [Alon-Beimel-Moran-Stemmer, ‘20]
• Proof: 0-covering number for trees (similar to closure bound for VCdim)
• Let C+,,! ∶ 0,1 ! → {0,1} be the !-wise OR function:

U-wise aggregation via V



Threshold dimension: definition
• Fix <, and , consisting of ℎ ∶ < → {0,1}.

Defn: Threshold dimension of hypothesis class ", 
denoted Tdim("), is largest 7 so that there exists:
• 1C, … , 1F ∈ 8;
• ℎC, … , ℎF ∈ ";
so that ℎQ 1W = F[? ≤ >] for all 1 ≤ >, ? ≤ 7.
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Motivation:
• Threshold dimension used to show finiteness of Ldim(") is necessary for  " to be 

privately PAC learnable
• In particular, following is used [Shelah, ‘78]: for any ",

Ldim " ≥ log Tdim " , Tdim " ≥ ⌊log Ldim(")⌋
Tight: class of thresholds on {1, … , 2+} has 

Ldim = O, Tdim = 2+
Unknown if tight



Results: closure properties for threshold dimension 
Recall: for binary hypothesis classes ,*, … , ,!:
C ,*, … , ,! ≔ E ↦ C ℎ* E ,… , ℎ! E : ℎ* ∈ ,*, … , ℎ! ∈ ,!

Theorem (closure property for threshold dimension): Suppose Tdim )Q ≤ + for 
all 1 ≤ - ≤ !. Then Tdim . )C, … , )R ≤ 2](F⋅R _`a R).

Theorem (lower bound; near-tightness of above): For any ! ∈ ℕ, there are classes 
)C, … , )R and a function . ∶ 0,1 R → {0,1} so that:
1. Tdim )Q ≤ + for all 1 ≤ - ≤ !.
2. Tdim . )C, … , )R ≥ 2b(FR).

• Previous work: upper bound of 2F⋅cR⋅c! [Alon-Beimel-Moran-Stemmer, ‘20]

• Previous work: lower bound of 2b(F) [Alon-Beimel-Moran-Stemmer, ‘20]



Proof of upper bound (& improving the lower bound)

Defn: For O, P ∈ ℕ, define Ramsey number Rd O as minimum S ∈ ℕ so that for any coloring 
of edges of Te with P colors, there exists a monochromatic (1-colored) clique of size O. 

• For S ∈ ℕ, let Te be complete graph on S vertices

“Clique” is complete graph (subgraph of f,)
e.g., orange triangle is monochromatic clique of size 3

• Ramsey’s theorem: Rd O ≤ 2g⋅d _`a d

• Proof of closure upper bound: upper bound on 
Rd(O) implies upper bound on Tdim U "C, … , "R

Thm (upper bound): Suppose Tdim >- ≤ O for 
h ≤ U. Then Tdim V >#, … , >. ≤ 2/(+⋅. 234 .).

• Contrapositive: if we have "C, … , "R with, ∀>, 
Tdim "Q ≤ 7 but Tdim U "C, … , "R ≥ 2i⋅j i

for some W ! → ∞, then:
limsupd→lRd 27 + 1 C/d = ∞

Thm (lower bound): There are classes >#, … , >.
and V ∶ 0,1 . → {0,1} so that:
1. Tdim >- ≤ O for all 1 ≤ h ≤ U.
2. Tdim V >#, … , >. ≥ 26(78).

(Would resolve long-standing open problem in Ramsey theory) ⇒ lower bound above (probably) hard to improve



Summary: overview of results

Upper bound 
(for any u and v9, … , v8, upper bound on 

dim(u(v9, … , v8))

Lower bound 
(there exist u and v9, … , v8, so that we 

can lower bound dim(u(v9, … , v8))

Littlestone dimension ^(7 ⋅ ! log !) Ω(7 ⋅ ! log !)

Threshold dimension 2](F⋅R _`a R) 2b(F⋅R)

Throughout: % defined as upper bound on Littlestone/threshold dimension on &!, … , &$

Thank you for listening!


