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Overview: privacy-preserving PAC learning

* Machine learning models often trained on sensitive data; important
to protect privacy of users’ data
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* Our focus: fundamental private PAC model [kasiviswanathan et al., ©08]

* Recent development: connection between private learnability and
online lear nability [Alon-Livni-Malliaris-Moran ‘19] [Bun-Livni-Moran "20]

* This talk: answer two open questions on “online learnability = private
learnability” from [Bun-Livni-moran “20]



Overview

1. Background on Private PAC learning

2. Sample-efficient proper private PAC learning
* Key ingredient: irreducibility

3. Implications for sanitization.



Background: differential privacy

* Collection of individuals, each produces example (x;,y;) € X xX{—1,1}

* Dataset S,, = {(x{,y1), ..., (X,,, ¥,,) }, (randomized) learner A:

[ 4
ﬂ ({smoker, 51 years, female}, cancer)  >

[ 4
'm ({smoker, 24 years, male}, no cancer)
[ 4

| Private learning

Classifier f : X —» {—1,1}

—

algorithm A predicting whether cancer
/ .
T ({non-smoker, 32 years, female}, no cancer) present
/Definition: Algorithm A is (€, 0)-differentially private (DP) if for all w
events E, for all neighboring datasets S, Sy, 4 B

\_

PrA(S,) € E] < € - Pr{A(S}) € E] + &

In this talk: € < 0(1) (e.g., € = 0.01), § <1/n®® (e.g.,,§ =n~1087)

Neighboring datasets:
those which differ in a
single example (x;, y;)




* ({smoker, 51 years, female},

: : Classifier f : X —
" ({smoker, 24 years, male}, no ,| Learning | N f
cancer) algorithm A U
0 / predicting whether
@ ({non-smoker, 32 years, female}, no cancer present.
cancer)

* Given a known class F of hypotheses, i.e., functions f : X — {—1,1}

e S, ={(xy,y1), ..., (X, V) } is drawn i.i.d. from unknown distribution
P on X x{—1,1}

* Goal: algorithm A(S,,) outputs f:X — {—1,1} minimizing
errp(f) = Jf ) #y]

* In this talk: realizable setting (WLOG by [Alon-Beimel-Moran-Stemmer, 20]):
[exists f* € Fsothat f*(x) = yforall (x,y) € support(P) J

* Ais proper iff € F almost surely, otherwise is improper



Background: private PAC learning, Littlestone dimension

* Private PAC model: algorithm A mapping §,, — f must be (¢,0)-DP

* Hypotheses classes F with a private PAC learning algorithm achieving

error 0(1) are exactly those with finite Littlestone dimension jaion-Livni-
Malliaris-Moran ‘19] [Bun-Livni-Moran ‘20]

~

Defn: For a binary tree with all internal nodes labeled by elements of X,

edges labeled by {—1,1}:

* ltisshattered by F if for each leaf £ there is some f, € F which labels all
nodes on the root-to-leaf path for £ according to the labels on the edges.

* E.g., forthe green leaf: need f,(x;) = —1, fr(x51) = 1, fr(x3,) = 1.

\_

)

Defn: Littlestone dimension of hypothesis class F, denoted Ldim(F), is
largest d so that there exists tree of depth d shattered by F.

* Finiteness of Littlestone dim. of F also characterizes its online learnability



Examples: finite Littlestone dimension classes

* Any finite class F has Littlestone dimension Ldim(F) < log(|F|)

e Class of threshold functionson X = {1, 2, ..., 2%} has Ldim(F) = d
» 2% such thresholds; threshold i evaluatesto 1 onj € X iffi < j

Green leaf corresponds to threshold

Example of shattered tree for _ _
which evaluatestolonx iff x < 3

d = 3:

* Throughout this talk: will use d to denote Ldim(F)



Prior work: sample complexity of private &
non-private learning

* Minimum number of samples n to achieve error ¢ = 0(1) in the:

(Non-private) PAC setting: Private PAC setting:

0, (VCdim(F)) N < 0g 52800
n = Q(log*(Ldim(F))
(where VCdim(F) is the VVC dimension
of F) [Vapnik-Chervonenkis, ‘71] [Alon-Livni-Malliaris-Moran ‘19] [Bun-Livni-
Moran "20]

Remarks:

e VCdim(F) < Ldim(F) for all F; moreover, gap between them can be arbitrarily big.

* For private PAC learning, can’t hope for bound sublinear in Ldim(F) if you want
bound to depend only on Ldim(F) since there is F with VCdim(F) = Ldim(F).
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Sample-efficient proper private learning

* Let F be a hypothesis class of Littlestone dimension d, consisting of
f:X-{-11}

* Let P be arealizable distribution on X xX{—1,1}

4 46 N

Theorem: Forn = 0(ea2) there is an algorithm A which takes as input n i.i.d.

samples from P, is (€, 0)-DP, and outputs with high probability a hypothesis
\f € F with classification error under P at most « (i.e., errp(f) < a). y

* Recall: that f € F means A is proper

* [Bun-Livni-Moran, 20] showed a sample complexity bound of n =
,0(d)

eEx

, and their learner was not proper



Proof overview: irreducibility

1. Show existence of an improper learner with polynomial sample
complexity
e Outputs SOA classifier for subclass satisfying special property: k-irreducibility

2. Use irreducibility and a min-max swap (i.e., Sion’s minimax
theorem) to “upgrade” the improper learner to a proper one

-
Definition: A hypothesis class G consisting of f: X — {—1,1} is 1-irreducible if for W
any x € X, thereissome b € {—1,1} so that

Ldlm({g EG: g(X) = b}) — Ldlm(G) ( For k = 1, k-irreducibility J

L generalizes 1-irreducibility.

* Main idea: the SOA classifier for irreducible classes has certain
“stability” properties conducive to the SOA classifier being private

-




SOA hypotheses & irreducibility ¢

‘ | “restriction of G to (x, b)” ]
*ForG c F,b € {—1,1}: define G|, p) ={g EG: g(x) =b}
* For G C F, define SOA hypothesis SOA;: X — {—1,1}, by:

(. . _
SOA;(x) = 11t Ldlm(Gl(x»l)) = Ldim(G|(x,-1))
L —1 otherwise

* Example: point functions G on X = {x{, ..., xs}; G = {94, ..., gs }:

Xvalue | g1 | g; | 95 | 91 |
X1 1 1 1 1 ) _

1 1 4 N
G is 1-irreducible if forany x € X
-1 1 -1 -1 -1 -1 ’
i there is some b € {—1,1} so that
LT B e I N G Ldim(G|(x,p)) = Ldim(G)
X, -1 -1 -1 1 | \_ J
Xs -1 1 -1 -1 1 -1

* (G isirreducible: Ldim(G) = 1, and Ldim(GI(x’_l)) =1forallx € X
» Since Ldim(G|(, 1)) = 0 forall x, SOA;(x) = —1forallx € X



Simple properties of irreducibility

-

Lemma 1 (alternative phrasing of irreducibility defn): Suppose H is 1-irreducible. For x €

X and b € {—1,1}, b = SOAy(x) if and only if Ldim(H|(y p)) = Ldim(H).

N

~

J

-

N

Lemma 2 (“stability of SOAs”): Suppose that H c G, Ldim(H) = Ldim(G), and that H is
1-irreducible. Then SOA; = SOAy, i.e., forall x € X, SOA;(x) = SOAL(x).

~

Proof is simple: fix any x € X, suppose SOAy(x) = 1 (-1 is similar). Then:

Ldim(G|x,1)) = Ldim(H| (1)) = Ldim(H) = Ldim(G)
B

Lemma 1

and so Ldim(G|(x,1)) = Ldim(G), i.e., SOA;(x) = 1 = SOAy (x).



Proof: SOA hypotheses/"“”"““°“°f“° b

*ForG c F,b € {—1,1}: define G|, p) ={g EG: g(x) =b }.
* For G C F, define SOA hypothesis SOA;: X — {—1,1}, by:

(1 et s _
SOA, (x) = |1 IfLdiM(Gle1)) = Ldim(Glee-1))

\ —1 otherwise

* Note: if G is 1-irreducible, never have Ldim(G|(x,1)) = Ldim(G|(x,-1))-

* Main step of proof: (

dataset §,,.

Depending only on P, not on the

|

/Lemma (relaxed global stability): Given P, there is a hypothesiso™ : X — {—ﬁ} sothat )

given a dataset S,, = {(x1, V1), ..., (x5, y»,) } drawn iid from P with n = poly(d), we can
construct from §,, subclasses @1, e @] C F so that:
1. Each SOA@J, has low population error w.h.p. (i.e., errp(SOA@j) is small)

\ 2. With probability = % over S, there is some j < J so that SOA@J, =0,

/




Using relaxed global stability

/Lemma (relaxed global stability): Given P, there is a “specia
{—1,1} so that given a dataset S,, = {(x1,y1), ..., (X, )} drawn iid from P with n =

|”

hypothesiso™ : X —

poly(d), we can construct from S,, subclasses Gy, ..., G] C F so that:

1. Each SOA@]_ has low population error w.h.p. (i.e., errp(SOA@j) is small)

\ 2. With probability = % over S, there is some j < J so that SOA@]_ =0,

|

Will have
J= 20(d2)

* Consequence: with m =~ 0(d) independent draws of S,;, can w.h.p discover some such o* --
turns out to be enough for private learnability (intuitively clear):
* |n particular, use a private sparse selection protocol ([BNS, ‘16; GKM, ‘20])

Full

dataset-<

o

stV

I SOAéil), e SOAGA§1)

5

SN SOAGAF)’ e SOAGAF)

<
<

Private sparse
selection protocol:

s

_+ SOA .(m), ..., SOA _m)
Gy G]

:
|
:



Proof of “relaxed global stability” lemma

/Lemma (relaxed global stability): Given P, there is a hypothesis 6* : X — {—1,1} so that given a dataset S,, = {(x1, 1), ..., (X5, ¥»,)} drawn iid w
from P with n = poly(d), we can construct from S, subclasses Gy, ..., G; € F so that: (

P, is empirical distr. for S,,, i.e.,

2 With probability ~ %over Sn, there is some j < J so that SOAg, = 0™ uniform distribution on

N () G )

* Notation: for distribution Q and a > 0, set Fp , = {f € F : erro(f) < a}
* ldea: condition on whether below assumption holds, where a@ > 0 is sdme small
parameter representing “acceptable” population error and ay <K :

1. Each SOA@J. has low population error (i.e., errp (SOA@J,) is small)

\

Assumption: For a given sample SMS that
Ldim(Fpn,a) = Ldim(Fpn’O(_aA ) and Fp«,_,  is l-irreducible. (

Setog™ =
SOAFP,a—aA/Z

o

* If Assumption holds: by VC theory, F'p ., € Fpg—q,/2 € Fp o andsoall3 haVV
equal Ldim; using irreducibility, by Lemma on prev. slide, SOAf, a—apjz = SOAFP

n,OC—C{A )
* Else: find x so that Ldim(Fp_ oo, lx1)), LAIM(Fp o o lx-1)) < Ldim(Fp ,4,),
“recurse” on F| 1) and F|x_1).



Generalization of 1-irreducibility

-
Definition: A hypothesis class G consisting of f: X — {—1,1} is k-irreducible if for
any depth-k tree x, there is some b4, ..., by, € {—1,1} so that

Ldim(Fl(xl»b1)»(x2(b1);b2);---;(xk(b1:k—1),bk)) = Ldim(F)

-

~

* In words: there is some leaf of the tree x so that the Ldim of the
class restricted to that leaf is equal to the Ldim of F.
* Important for the general inductive step of the proof.
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B a C kg I'O U N d S a N |t| Za t | O N [Blum-Ligett-Roth, ‘08, Beimel-Nissim-Stemmer, ‘14]

* Sanitization (i.e., private query release): give an estimate for the
mean of each binary hypothesis f € F over a given dataset S.

[ ]
@ ({smoker, 51 years, female, cancer}) — « 2/3 of dataset is a smoker
o . * 1/3 of dataset is smoker with
w ({smoker, 24 years, male, no cancer}) > SanitizerA —
cancer
_— * Etc. (other queries)

[ 4
ﬁ ({non-smoker, 32 years, female, no cancer})

/ Definition: Fix X, F. Algorithm A is a sanitizer for F with accuracy a and sample I
complexity n if it is (¢, §)-DP and for all datasets S = (x4, ..., x,,) € X", A(S)
outputs Est: F — [—1,1], so that, with high probability, for all f € F,

n

1
Est() == ) fx) <@
=1

o




Implications for sanitization

« [Bousquet-Livni-Moran ‘20]: “Private proper learning” = “sanitization”

e OQur result: “Finite Littlestone dim.” = “Private proper learning”; so:
4 )

Corollary: Suppose F has Littlestone dimension d & dual Littlestone dimension d”.

~ do\d* L. : :
Forn = 0( E;/B—), F has a sanitizer with sample complexity n and accuracy «.

N /

* Dual Littlestone dimension d* of F is the Littlestone dimension of the
dual class of F

e Known that d* < 2

2d+2 .
, and so also using [Bun-Nissim-Stemmer-Vadhan, ‘15]:

Corollary: F is sanitizable (i.e., has a sanitizer with sample complexity poly(1/a)) if
and only if it has finite Littlestone dimension.




. Thank you for listening!
Open Questions ! °

* Main question: characterization of sample complexity of (proper &
improper) learning with approximate DP, up to a constant (ideally)

* VVC dimension gives characterization for (non-private) PAC learning [Vapnik, 98]

* Littlestone dimension does so for online learning [Littlestone, ‘87; Ben-David, Pdl-Shalev-
Shwartz, ‘09]

* One-way public coin CC does so for PAC learning with pure DP [Beimel-Nissim-Stemmer,
‘19; Feldman-Xiao, ‘14]

* Intermediate questions:

e Can we get O(Ldim(F)) samples? (Can’t do better for F s.t. Ldim(F) = VCdim(F))

* Best known lower bound is Q(VCdim(F) + log* Ldim(F)) [Alon-Livni-Malliaris-Moran,
‘20]; so can we get upper bound of poly(VCdim(F),log* Ldim(F))?

Can the sample complexity of proper private learning (w/ approximate DP)
be asymptotically larger than that for improper private learning?

* Answer is “yes” for pure DP [Beimel-Brenner-Kasiviswanathan-Nissim, ‘14]



