Sample-efficient proper PAC learning with approximate differential privacy

Badih Ghazi¹

Noah Golowich² Ravi Kumar¹ Pasin Manurangsi¹

¹Google Research

²MIT; work done while interning at Google Research

Overview: privacy-preserving PAC learning

 Machine learning models often trained on sensitive data; important to protect privacy of users' data

- Our focus: fundamental private PAC model [Kasiviswanathan et al., '08]
- Recent development: connection between private learnability and online learnability [Alon-Livni-Malliaris-Moran '19] [Bun-Livni-Moran '20]
 - This talk: answer two open questions on "online learnability ⇒ private learnability" from [Bun-Livni-Moran '20]

Overview

- 1. Background on Private PAC learning
- 2. Sample-efficient proper private PAC learning
 - Key ingredient: irreducibility
- 3. Implications for sanitization.

Background: differential privacy

- Collection of individuals, each produces example $(x_i, y_i) \in X \times \{-1, 1\}$
- Dataset $S_n = \{(x_1, y_1), \dots, (x_n, y_n)\}$, (randomized) learner A:

Definition: Algorithm A is (ϵ, δ) -differentially private (DP) if for all

events E, for all neighboring datasets S_n , S_n' ,

$$\Pr_{A}[A(S_n) \in E] \le e^{\epsilon} \cdot \Pr_{A}[A(S'_n) \in E] + \delta$$

Neighboring datasets:

those which differ in a single example (x_i, y_i)

In this talk: $\epsilon \leq O(1)$ (e.g., $\epsilon = 0.01$), $\delta < 1/n^{\omega(1)}$ (e.g., $\delta = n^{-\log n}$)

PAC learning

- Given a *known* class F of hypotheses, i.e., functions $f: X \to \{-1,1\}$
- $S_n = \{(x_1, y_1), \dots, (x_n, y_n)\}$ is drawn i.i.d. from *unknown* distribution P on $X \times \{-1,1\}$
- Goal: algorithm $A(S_n)$ outputs $\hat{f}: X \to \{-1,1\}$ minimizing

$$\operatorname{err}_{P}(\hat{f}) \coloneqq \Pr_{(x,y) \sim P}[\hat{f}(x) \neq y]$$

• In this talk: realizable setting (WLOG by [Alon-Beimel-Moran-Stemmer, '20]):

exists
$$f^* \in F$$
 so that $f^*(x) = y$ for all $(x, y) \in \text{support}(P)$

• A is proper if $\hat{f} \in F$ almost surely, otherwise is improper

Background: private PAC learning, Littlestone dimension

- Private PAC model: algorithm A mapping $S_n \mapsto \hat{f}$ must be (ϵ, δ) -DP
- Hypotheses classes F with a private PAC learning algorithm achieving error o(1) are exactly those with finite Littlestone dimension [Alon-Livni-Malliaris-Moran '19] [Bun-Livni-Moran '20]

Defn: For a binary tree with all internal nodes labeled by elements of X, edges labeled by $\{-1,1\}$:

- It is shattered by F if for each leaf ℓ there is some $f_{\ell} \in F$ which labels all nodes on the root-to-leaf path for ℓ according to the labels on the edges.
- E.g., for the green leaf: need $f_{\ell}(x_1) = -1$, $f_{\ell}(x_{21}) = 1$, $f_{\ell}(x_{32}) = 1$.

Defn: Littlestone dimension of hypothesis class F, denoted Ldim(F), is largest d so that there exists tree of depth d shattered by F.

• Finiteness of Littlestone dim. of F also characterizes its online learnability

Examples: finite Littlestone dimension classes

- Any finite class F has Littlestone dimension $\mathrm{Ldim}(F) \leq \log(|F|)$
- Class of threshold functions on $X = \{1, 2, ..., 2^d\}$ has $\mathrm{Ldim}(F) = d$
 - 2^d such thresholds; threshold i evaluates to 1 on $j \in X$ iff $i \le j$

• Throughout this talk: will use d to denote $\mathsf{Ldim}(F)$

Prior work: sample complexity of private & non-private learning

• Minimum number of samples n to achieve error $\alpha = o(1)$ in the:

(Non-private) PAC setting:

 $\Theta_{\alpha}(\operatorname{VCdim}(F))$

(where VCdim(F) is the VC dimension of F) [Vapnik-Chervonenkis, '71]

Private PAC setting:

$$n \leq O_{\alpha,\epsilon,\delta}(2^{\operatorname{Ldim}(F)})$$

 $n \geq \Omega(\log^*(\operatorname{Ldim}(F)))$

[Alon-Livni-Malliaris-Moran '19] [Bun-Livni-Moran '20]

Remarks:

- $VCdim(F) \le Ldim(F)$ for all F; moreover, gap between them can be arbitrarily big.
- For private PAC learning, can't hope for bound *sublinear* in Ldim(F) if you want bound to depend only on Ldim(F) since there is F with VCdim(F) = Ldim(F).

Overview

- 1. Background on Private PAC learning
- 2. Sample-efficient proper private PAC learning
 - Key ingredient: irreducibility
- 3. Implications for sanitization.

Sample-efficient proper private learning

- Let F be a hypothesis class of Littlestone dimension d, consisting of $f: X \to \{-1,1\}$
- Let P be a realizable distribution on $X \times \{-1,1\}$

Theorem: For $n = \tilde{O}(\frac{d^6}{\epsilon \alpha^2})$, there is an algorithm A which takes as input n i.i.d. samples from P, is (ϵ, δ) -DP, and outputs with high probability a hypothesis $\hat{f} \in F$ with classification error under P at most α (i.e., $\operatorname{err}_P(f) \leq \alpha$).

- Recall: that $\hat{f} \in F$ means A is proper
- [Bun-Livni-Moran, '20] showed a sample complexity bound of $n \approx \frac{2^{O(d)}}{\epsilon \alpha}$, and their learner was not proper

Proof overview: irreducibility

- 1. Show existence of an *improper* learner with polynomial sample complexity
 - Outputs SOA classifier for subclass satisfying special property: k-irreducibility
- 2. Use irreducibility and a min-max swap (i.e., *Sion's minimax theorem*) to "upgrade" the improper learner to a *proper* one

```
Definition: A hypothesis class G consisting of f: X \to \{-1,1\} is 1-irreducible if for any x \in X, there is some b \in \{-1,1\} so that \mathrm{Ldim}(\{g \in G: g(x) = b\}) = \mathrm{Ldim}(G) For k \geq 1, k-irreducibility
```

For $k \ge 1$, k-irreducibility generalizes 1-irreducibility.

• Main idea: the SOA classifier for irreducible classes has certain "stability" properties conducive to the SOA classifier being private

SOA hypotheses & irreducibility

"restriction of G to (x, b)"

- For $G \subset F$, $b \in \{-1,1\}$: define $G|_{(x,b)} \coloneqq \{g \in G : g(x) = b\}$
- For $G \subset F$, define SOA hypothesis $SOA_G: X \to \{-1,1\}$, by: $SOA_G(x) = \begin{cases} 1 & \text{if } Ldim(G|_{(x,1)}) \geq Ldim(G|_{(x,-1)}) \\ -1 & \text{otherwise} \end{cases}$
- Example: point functions G on $X = \{x_1, ..., x_5\}; G = \{g_1, ..., g_5\}$:

X-value	g_1	$oldsymbol{g_2}$	g_3	g_4	$oldsymbol{g}_{5}$	SOA_G
x_1	1	-1	-1	-1	-1	-1
x_2	-1	1	-1	-1	-1	-1
x_3	-1	-1	1	-1	-1	-1
x_4	-1	-1	-1	1	-1	-1
x_5	-1	-1	-1	-1	-1	-1

G is **1-irreducible** if for any $x \in X$, there is some $b \in \{-1,1\}$ so that $\mathrm{Ldim}(G|_{(x,b)}) = \mathrm{Ldim}(G)$

- G is irreducible: Ldim(G) = 1, and $Ldim(G|_{(x,-1)}) = 1$ for all $x \in X$
 - Since $\mathrm{Ldim}(G|_{(x,1)}) = 0$ for all x, $\mathrm{SOA}_G(x) = -1$ for all $x \in X$

Simple properties of irreducibility

Lemma 1 (alternative phrasing of irreducibility defn): Suppose H is 1-irreducible. For $x \in X$ and $b \in \{-1,1\}$, $b = \mathrm{SOA}_H(x)$ if and only if $\mathrm{Ldim}(H|_{(x,b)}) = \mathrm{Ldim}(H)$.

Lemma 2 ("stability of SOAs"): Suppose that $H \subset G$, Ldim(H) = Ldim(G), and that H is 1-irreducible. Then $SOA_G = SOA_H$, i.e., for all $x \in X$, $SOA_G(x) = SOA_H(x)$.

Proof is simple: fix any $x \in X$, suppose $SOA_H(x) = 1$ (-1 is similar). Then:

$$\operatorname{Ldim}(G|_{(x,1)}) \ge \operatorname{Ldim}(H|_{(x,1)}) = \operatorname{Ldim}(H) = \operatorname{Ldim}(G)$$
Lemma 1

and so $\operatorname{Ldim}(G|_{(x,1)}) = \operatorname{Ldim}(G)$, i.e., $\operatorname{SOA}_G(x) = 1 = \operatorname{SOA}_H(x)$.

"restriction of G to (x, b)"

Proof: SOA hypotheses

- For $G \subset F$, $b \in \{-1,1\}$: define $G|_{(x,b)} \coloneqq \{g \in G : g(x) = b\}$.
- For $G \subset F$, define SOA hypothesis $SOA_G: X \to \{-1,1\}$, by: $SOA_G(x) = \begin{cases} 1 & \text{if } Ldim(G|_{(x,1)}) \geq Ldim(G|_{(x,-1)}) \\ -1 & \text{otherwise} \end{cases}$
- Note: if G is 1-irreducible, never have $\mathrm{Ldim}(G|_{(x,1)}) = \mathrm{Ldim}(G|_{(x,-1)})$.
- Main step of proof:

Depending only on P, **not** on the dataset S_n .

Lemma (relaxed global stability): Given P, there is a hypothesis $\sigma^*: X \to \{-1,1\}$ so that given a dataset $S_n = \{(x_1, y_1), ..., (x_n, y_n)\}$ drawn iid from P with n = poly(d), we can construct from S_n subclasses $\widehat{G}_1, ..., \widehat{G}_I \subset F$ so that:

- 1. Each $SOA_{\widehat{G}_j}$ has low population error w.h.p. (i.e., $err_P(SOA_{\widehat{G}_j})$ is small)
- 2. With probability $\approx \frac{1}{d}$ over S_n , there is some $j \leq J$ so that $SOA_{\widehat{G}_j} = \sigma^*$.

Using relaxed global stability

Lemma (relaxed global stability): Given P, there is a "special" hypothesis $\sigma^*: X \to \{-1,1\}$ so that given a dataset $S_n = \{(x_1,y_1), \dots, (x_n,y_n)\}$ drawn iid from P with $n = \operatorname{poly}(d)$, we can construct from S_n subclasses $\widehat{G}_1, \dots, \widehat{G}_J \subset F$ so that:

1. Each $\operatorname{SOA}_{\widehat{G}_i}$ has low population error w.h.p. (i.e., $\operatorname{err}_P(\operatorname{SOA}_{\widehat{G}_i})$ is small) $J = 2^{O(d^2)}$

- 2. With probability $\approx \frac{1}{d}$ over S_n , there is some $j \leq J$ so that $SOA_{\widehat{G}_j} = \sigma^*$.
- Consequence: with $m \approx \tilde{O}(d)$ independent draws of S_n , can w.h.p discover some such σ^* -- turns out to be enough for private learnability (intuitively clear):
 - In particular, use a private sparse selection protocol ([BNS, '16; GKM, '20])

Proof of "relaxed global stability" lemma

Lemma (relaxed global stability): Given P, there is a hypothesis $\sigma^*: X \to \{-1,1\}$ so that given a dataset $S_n = \{(x_1,y_1), \dots, (x_n,y_n)\}$ drawn iid from P with n = poly(d), we can construct from S_n subclasses $\widehat{G}_1, \dots, \widehat{G}_J \subset F$ so that:

- 1. Each $SOA_{\hat{G}_i}$ has low population error (i.e., $err_P(SOA_{\hat{G}_i})$ is small)
- 2. With probability $\approx \frac{1}{d}$ over S_n , there is some $j \leq J$ so that $SOA_{\hat{G}_j} = \sigma^*$.

 \widehat{P}_n is empirical distr. for S_n , i.e., uniform distribution on $\{(x_1, y_1), \dots, (x_n, y_n)\}.$

- Notation: for distribution Q and $\alpha>0$, set $F_{Q,\alpha}:=\{f\in F:\operatorname{err}_Q(f)\leq\alpha\}$.
- **Idea**: condition on whether below assumption holds, where $\alpha > 0$ is some small parameter representing "acceptable" population error and $\alpha_{\Delta} \ll \alpha$:

```
Assumption: For a given sample S_n, it holds that \mathrm{Ldim}(F_{\widehat{P}_n,\alpha})=\mathrm{Ldim}(F_{\widehat{P}_n,\alpha-\alpha_\Delta}) and F_{\widehat{P}_n,\alpha-\alpha_\Delta} is 1-irreducible.
```

 $Set \sigma^* = SOA_{F_{P,\alpha-\alpha_{\Delta}/2}}$

- If Assumption holds: by VC theory, $F_{\widehat{P}_n,\alpha-\alpha_\Delta} \subset F_{P,\alpha-\alpha_\Delta/2} \subset F_{\widehat{P}_n,\alpha}$, and so all 3 have equal Ldim; using irreducibility, by Lemma on prev. slide, $SOA_{F_{P,\alpha-\alpha_\Delta/2}} = SOA_{F_{\widehat{P}_n,\alpha-\alpha_\Delta}}$.
- Else: find x so that $\operatorname{Ldim}(F_{\widehat{P}_n,\alpha-\alpha_{\Delta}}|_{(x,1)})$, $\operatorname{Ldim}(F_{\widehat{P}_n,\alpha-\alpha_{\Delta}}|_{(x,-1)}) < \operatorname{Ldim}(F_{\widehat{P}_n,\alpha-\alpha_{\Delta}})$, "recurse" on $F|_{(x,1)}$ and $F|_{(x,-1)}$.

Generalization of 1-irreducibility

Definition: A hypothesis class G consisting of $f: X \to \{-1,1\}$ is k-irreducible if for any depth-k tree x, there is some $b_1, \ldots, b_k \in \{-1,1\}$ so that $\mathrm{Ldim}\big(F|_{(x_1,b_1),(x_2(b_1),b_2),\ldots,(x_k(b_{1:k-1}),b_k)}\big) = \mathrm{Ldim}(F)$

- In words: there is some leaf of the tree x so that the Ldim of the class restricted to that leaf is equal to the Ldim of F.
- Important for the general inductive step of the proof.

Overview

- 1. Background on Private PAC learning
- 2. Sample-efficient proper private PAC learning
 - Key ingredient: irreducibility
- 3. Implications for sanitization.

Background: sanitization [Blum-Ligett-Roth, '08; Beimel-Nissim-Stemmer, '14]

• Sanitization (i.e., private query release): give an estimate for the mean of each binary hypothesis $f \in F$ over a given dataset S.

Definition: Fix X, F. Algorithm A is a **sanitizer** for F with accuracy α and sample complexity n if it is (ϵ, δ) -DP and for all datasets $S = (x_1, ..., x_n) \in X^n, A(S)$ outputs Est: $F \to [-1,1]$, so that, with high probability, for all $f \in F$,

$$\operatorname{Est}(f) - \frac{1}{n} \sum_{i=1}^{n} f(x_i) \le \alpha$$

Implications for sanitization

- [Bousquet-Livni-Moran '20]: "Private proper learning" ⇒ "sanitization"
- Our result: "Finite Littlestone dim." ⇒ "Private proper learning"; so:

Corollary: Suppose F has Littlestone dimension d & dual Littlestone dimension d^* .

For $n = \tilde{O}(\frac{d^6\sqrt{d^*}}{\epsilon \alpha^3})$, F has a sanitizer with sample complexity n and accuracy α .

- Dual Littlestone dimension d^{st} of F is the Littlestone dimension of the dual class of F
- Known that $d^* \leq 2^{2^{d+2}}$, and so also using [Bun-Nissim-Stemmer-Vadhan, '15]:

Corollary: F is sanitizable (i.e., has a sanitizer with sample complexity $poly(1/\alpha)$) if and only if it has finite Littlestone dimension.

Thank you for listening!

Open Questions

- Main question: characterization of sample complexity of (proper & improper) learning with approximate DP, up to a constant (ideally)
 - VC dimension gives characterization for (non-private) PAC learning [Vapnik, '98]
 - Littlestone dimension does so for online learning [Littlestone, '87; Ben-David, Pál-Shalev-Shwartz, '09]
 - One-way public coin CC does so for PAC learning with pure DP [Beimel-Nissim-Stemmer, '19; Feldman-Xiao, '14]
- Intermediate questions:
 - Can we get $O(\operatorname{Ldim}(F))$ samples? (Can't do better for F s.t. $\operatorname{Ldim}(F) = \operatorname{VCdim}(F)$)
 - Best known lower bound is $\Omega(\operatorname{VCdim}(F) + \log^* \operatorname{Ldim}(F))$ [Alon-Livni-Malliaris-Moran, '20]; so can we get upper bound of poly($\operatorname{VCdim}(F)$, $\log^* \operatorname{Ldim}(F)$)?
- Can the sample complexity of proper private learning (w/approximate DP) be asymptotically larger than that for improper private learning?
 - Answer is "yes" for pure DP [Beimel-Brenner-Kasiviswanathan-Nissim, '14]