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Two-player zero-sum Markov games

• 2-player zero-sum Markov game: [Shapley, ‘53; Littman, ’94]
• 𝐺 = (𝑆, 𝐴, 𝐵, 𝑃, 𝑟, 𝜁, 𝜌).
• 𝑆 is a finite set of states.
• 𝐴, 𝐵 are finite sets of actions for each player.
• 𝜌 ∈ Δ 𝑆 is initial state distribution at time 𝑡 = 0.
• 𝑟(𝑠, 𝑎, 𝑏) is reward function (𝐴 player wants to minimize reward, 𝐵 player 

wants to maximize).
• 𝑃 𝑠! 𝑠, 𝑎, 𝑏) is the transition probability matrix: given in state 𝑠 and players 

take actions 𝑎, 𝑏, gives distribution for next state 𝑠′.
• Stopping probability: 𝜻 𝒔,𝒂,𝒃 ≔ 1 − ∑&!∈(𝑃 𝑠! 𝑠, 𝑎, 𝑏) > 0 .
• Assume 𝜻 ≔ min

&,),*
𝜻 𝒔,𝒂,𝒃 > 0; i.e., game stops after exp. ≤ 1/𝜁 steps.



(Fun) examples of Markov games: 
• Chess, Go (not stochastic, 𝜁 = 0)
• Backgammon (𝜁 = 0)
• Above are turn-based, i.e., at each state only 1 agent can take actions 

that influence next state’s distribution.
• Example of non-turn-based Markov game (still 𝜁 = 0):
• Chess, except both players move  simultaneously at each step:
• If two players move a piece to the same square, choose one randomly to 

remove from the board.



Policies, value function

• Fix policies 𝜋! ∶ 𝑆 → Δ 𝐴 , 𝜋": 𝑆 → Δ 𝐵 . 
• Induced distribution of trajectories 𝑠# , 𝑎# , 𝑏# , 𝑟# $%#%&, where:
• 𝑠+ ∼ 𝜌
• 𝑎, ∼ 𝜋- ⋅ 𝑠,), 𝑏, ∼ 𝜋. ⋅ 𝑠,)
• 𝑟, = 𝑟(𝑠,, 𝑎,, 𝑏,)
• 𝑇 ≥ 0 is last time step before game steps (𝑇 is random).

• Value function:

𝑉' 𝜋!, 𝜋" ≔ 𝐸(!,(",' 4
$%#%&

𝑟 𝑠# , 𝑎# , 𝑏# | 𝑠$ ∼ 𝜌



Shapley’s min-max theorem
• Theorem (Shapley, ‘53): There exists a Nash equilibrium in any 

Markov game, i.e., a policy tuple (𝜋!∗, 𝜋"∗) so that:

𝑉' (!∗ ,(" ≤ 𝑉' 𝜋!∗, 𝜋"∗ ≤ 𝑉' 𝜋!, 𝜋"∗ ∀𝜋!, 𝜋"
• In particular:

𝑉'∗ ≔ min
(!

max
("

𝑉' 𝜋!, 𝜋" = max
(!

min
("

𝑉'(𝜋!, 𝜋")

Problem: given ability to play policies 𝜋!, 𝜋" to sample trajectories, find 
A𝜋!, A𝜋" so that

max
("

𝑉' A𝜋! , 𝜋" − 𝑉' 𝜋!∗, 𝜋"∗ ≤ 𝜖

𝑉' 𝜋!∗, 𝜋!∗ −min
(!

𝑉' 𝜋!, A𝜋" ≤ 𝜖



Prior work: centralized/coordinated protocols

• Most previous works take algos from single-agent setting and 
``replace the maximum (of reward) with computation of Nash’’:
• VI-ULCB [Bai & Jin, ‘20]: take UCBVI [Azar et al., ‘17], compute upper + lower 

estimates of 𝑄(𝑠, 𝑎, 𝑏), find Nash eq. of each game 𝑄(𝑠,⋅,⋅).
• VI-Explore [Bai & Jin, ‘20]: exploration phase to build a model of the game, 

then value iteration on the empirical model.
• OMNI-VI [Qie et al., ‘20]: similar to LSVI-UCB [Jin et al., ‘19], except find a CCE 

of a game for each 𝑠 as opposed to max of (optimistic) 𝑄-values.
• Nash Q-learning [Bai et al., ‘20]: similar to proof of 𝑄-learning [Jin et al., ‘18], 

except replace max over 𝑄 values with computation of a CCE.
• One exception: Nash V-learning [Bai et al., ‘20]



Our goal: independent learning

• Independent protocol:
• Independent game oracle: Each episode 𝑖, players propose policies 𝜋-

(0): 𝑆 →
Δ 𝐴 , 𝜋.

(0): 𝑆 → Δ(𝐵), executed in game 𝐺, players observe states, their own 
actions, rewards.
• Limited private storage: can only store policy parameter vector, 𝑂(1) past 

trajectories.

• Not meant to be a formal definition (though our protocols clearly 
satisfy above requirements).

i.e., Min player observes 
𝑠!
(#), 𝑎!

(#), 𝑟!
(#)

%&!&'
; 

similarly for Max player.



Our protocol: independent policy gradient method
1. Players choose policy parametrizations 𝑥 ↦ 𝜋+, 𝑦 ↦ 𝜋, (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌

are parameter vectors).

2. Treat finding equilibrium as optimization problem: i.e., do stochastic 
gradient descent-ascent (SGDA):
𝑥(./!) ← Π1 𝑥(.) − 𝜂+𝑔+

(.) , 𝑦(./!) ← Π2(𝑦(.) + 𝜂,𝑔,
(.))

Where 𝑔+
(.), 𝑔,

(.) are unbiased gradient estimators:
𝐸 𝑔+

(.) = ∇+𝑉' 𝜋+ ! , 𝜋, ! , 𝐸 𝑔,
(.) = ∇,𝑉'(𝜋+ ! , 𝜋, ! )

We use 𝜀-greedy (direct) parametrization: e.g., 𝑋 = Δ 𝐴 (, 𝜋5 𝑎 𝑠) ≔ 1 − 𝜀5 𝑥&,) +
6"
|8|

We use REINFORCE estimator: e.g., 𝑔5
(0) ≔ ∑+ 9,9: 𝑟,

(0) ⋅ ∑, ∇5 log 𝜋5(𝑎,
(0) | 𝑠,

(0)),

(Recall: trajectory 𝑠,
(0), 𝑎,

(0), 𝑟,
(0)

+9,9:
observed by min player)

Take 𝜂( ≪ 𝜂)
(2-timescale 
algorithm)



Main theorem: polynomial sample complexity

• 𝐶3 is distribution mismatch coefficient (occurs in 1-player setting too).
• We do not get guarantee (∗) for max player 𝜋,(%) when learning rates 

are 𝜂+ ≍ 𝜖!$.5, 𝜂, ≍ 𝜖6 (due to asymmetric nature).
• Indeed: in experiments, (∗) does not hold for max player.

• Note: greedy parametrizations tuned to 𝜖 as well: 𝜀+ ≍ 𝜖, 𝜀, ≍ 𝜖".

Theorem [DFG ‘20]: Let 𝜖 > 0 be given. Suppose both players follow SGDA with learning 
rates 𝜂5 ≍ 𝜖-+.>, 𝜂? ≍ 𝜖@; then we have ``on-average convergence’’ for min player:

𝐸
1
𝑁 ⋅ Z

-909A

max
B#

𝑉C 𝜋5(%) , 𝜋. −min
B'

max
B#

𝑉C(𝜋-, 𝜋.) ≤ 𝜖

for 𝑁 ≤ 𝑝𝑜𝑙𝑦(𝜖D-, 𝐶E , 𝑆 , 𝐴 , 𝐵 , 𝜁D-).

(∗)

𝑁 = 𝑂
𝐴 ∨ 𝐵 *%.,- 𝑆 *..-𝐶/*,.-

𝜖*..-𝜁01.-



Distribution mismatch coefficient

• For	policy	𝜋!, let	Π"∗ 𝜋! be	the	set	of	best	responses	for	agent	2;	
similarly	define	Π!∗ 𝜋" .	
• State	visitation	distribution:

𝑑'
(!,(" 𝑠 ∝ ∑#7$ Pr

(!,("
𝑠# = 𝑠 𝑠$ ∼ 𝜌)

• 𝐶3 ≔ max{max
("

min
(!∈9!∗ ("

:'
(!,("

' ;
, max

(!
min

("∈9"∗ (!

:'
(!,("

' ;
}.

• Compare with typical 𝐶< for a (1-agent) MDP [AKLM, ‘19]:

• 𝐶< ≔ :'(
∗

' ;



Proof overview of main theorem
1. Show that 𝑉'(𝜋+ , 𝜋,) satisfies a 2-sided gradient domination (GD)  

condition.
• I.e., for all 𝑥, function 𝑦 ↦ 𝑉C(𝜋5, 𝜋?) satisfies a GD condition; and:
• For all 𝑦, function 𝑥 ↦ 𝑉C(𝜋5, 𝜋?) satisfies a GD condition.

2. Show that 2-timescale SGDA converges for any objective 𝑓(𝑥, 𝑦)
satisfying such a 2-sided GD condition.

Some prior work for item 2:
• [YKH, ‘20]: (deterministic) 2-timescale GDA converges under a 2-sided 

PL condition (much stronger, allows linear rates)
• [LJJ, ‘20]: 2-timescale SGDA converges if 𝑓(𝑥, 𝑦) is concave in 𝑦.



Last-iterate convergence: extragradient
• Korpelevich’s extragradient (EG) method (i.e., mirror-prox [Nemirovskii, ‘04]):
• Given 𝑓 ∶ 𝑋 ×𝑌 → ℝ; goal is to solve min

!
max
"
𝑓(𝑥, 𝑦):

𝑥($%
&
') ← Π) 𝑥($) − 𝜂𝑓 𝑥($), 𝑦($) , 𝑦($%

&
') ← Π*(𝑦($) + 𝜂𝑓 𝑥($), 𝑦($) )

𝑥($%&) ← Π) 𝑥($) − 𝜂𝑓 𝑥($%
&
'), 𝑦($%

&
') , 𝑦($%&) ← Π*(𝑦($) + 𝜂𝑓 𝑥($%

&
'), 𝑦($%

&
') )

Theorem [Korpelevich, ‘76; FP, ‘01]: If 𝑓(𝑥, 𝑦) satisfies the MVI property, then 
the iterates (𝑥($), 𝑦($)) of EG converge to a Nash equilibrium(𝑥∗, 𝑦∗).

Definition: MVI property means that for all Nash equilibria (𝑥∗, 𝑦∗) of 𝑓,
∇!𝑓 𝑥, 𝑦 , 𝑥 − 𝑥∗ + −∇"𝑓 𝑥, 𝑦 , 𝑦 − 𝑦∗ ≥ 0 ∀ 𝑥, 𝑦 ∈ 𝑋 ×𝑌



Back to Markov games…
• Focus on single-state case with direct parametrization:

𝑥 = 𝜋+ ∈ 𝑋 ≔ Δ 𝐴 , 𝑦 = 𝜋, ∈ 𝑌 ≔ Δ(𝐵)
• Game value is that of a ratio game: [von Neumann, ‘45]

𝑉 𝜋+ , 𝜋, =
𝐸=∼(*,?∼(+[𝑟 𝑎, 𝑏 ]
Pr

(*,(+
[game stops]

=
𝐸=∼(*,?∼(+[𝑟 𝑎, 𝑏 ]

𝐸=∼(*,?∼(+[1 − 𝑃 𝑠$ 𝑠$, 𝑎, 𝑏 ]
𝑉 𝜋+ , 𝜋, =

⟨𝑥, 𝑅𝑦 ⟩
⟨𝑥, 𝑆𝑦 ⟩

, 𝑅=,? = 𝑟 𝑎, 𝑏 , 𝑆=,?≥ 𝜁 > 0

Proposition [DFG, ‘20]: There exists an objective 𝑓 𝑥, 𝑦 = ⟨!,."⟩
⟨!,0"⟩

, for 𝑥, 𝑦 ∈
Δ({1,2}), which does not satisfy the MVI property.

Conjecture [DFG, ‘20]: For any 𝑅 ∈ −1,1 1×3, 𝑆 ∈ 𝜁, 1 1 ×3, EG applied to 
the function 𝑓 𝑥, 𝑦 = ⟨!,."⟩

⟨!,0"⟩
(𝑥 ∈ Δ 𝑛 , 𝑦 ∈ Δ( 𝑚 )) converges to Nash eq.



Other open problems: better rates, exploration

• Get better rates (ours are quite bad)
• Incorporate optimism (would also get rid of dependence on 𝐶E), e.g., [ESRM, 

‘20] for single agent setting.
• Issue with above: hard to make that approach independent.

• Other directions in [AKLM, ‘20]: natural policy gradient, linear 
function approximation.
• Multi-agent/non-zero-sum games.

Thank you!


