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Two-player zero-sum Markov games

e 2-player zero-sum Markov game: [Shapley, ‘53; Littman, '94]
G= (5A4,B,P,1,0p).
e Sis afinite set of states.
* A, B are finite sets of actions for each player.
* p € A(S) is initial state distribution at time t = 0.

* 7(s,a, b) is reward function (4 player wants to minimize reward, B player
wants to maximize).

* P(s'|s,a, b) is the transition probability matrix: glven in state s and players
take actions a, b, gives distribution for next state s’.

* Stopping probability: {55 =1 — XgesP(s'ls,a,b) > 0.
* Assume ( = mln ({Sab} > (; i.e., game stops after exp. < 1/ steps.



(Fun) examples of Markov games:

* Chess, Go (not stochastic, { = 0)
* Backgammon (¢ = 0)

* Above are turn-based, i.e., at each state only 1 agent can take actions
that influence next state’s distribution.

* Example of non-turn-based Markov game (still { = 0):
* Chess, except both players move simultaneously at each step:




Policies, value function

* Fix policiesm; : S =» A(A),m,:S = A(B).
* Induced distribution of trajectories (s, a;, bs, 1+ ) o<t <7, Where:
*So~pP
* a; ~ 1 (:|s¢), be ~ 72 (-|s¢)
* 1 = 1(S¢, ag, be)
e T = 0 is last time step before game steps (T is random).

e Value function:

‘/'0(77:1,77:2) = E7T1,7T2,p z T(StJ A, bt)l So ~ P

0<t<T




Shapley’s min-max theorem

* Theorem (Shapley, ‘53): There exists a Nash equilibrium in any
Markov game, i.e., a policy tuple (ir{, ;) so that:
Vot < Vp(q,m3) < V,(my,m3) Vg, 1y

* In particular:

V," := minmaxV, (m,, ;) = maxminV, (7, ;)
n, T2 Ty T2

n

/Problem: given ability to play policies 1, T, to sample trajectories, fin
T, 1, so that
rr}ch‘{o(nl 177:2) o I{D(nikl ﬂ:;) < €

V, (i, m]) — min ¥ (my, 7,) < €

o 1 J




Prior work: centralized/coordinated protocols

. Most previous works take algos from single-agent setting and
“replace the maximum (of reward) with computation of Nash”’:

* VI-ULCB [Bai & Jin, 20]: take UCBVI [Azar et al., “17], compute upper + lower
estimates of Q(s, a, b), find Nash eq. of each game Q(s,-,").

* VI-Explore [Bai & Jin, ‘20]: exploration phase to build a model of the game,
then value iteration on the empirical model.

* OMNI-VI [Qie et al., 20]: similar to LSVI-UCB [Jin et al., ‘19], except find a CCE
of a game for each s as opposed to max of (optimistic) Q-values.

* Nash Q-learning [Bai et al., “20]: similar to proof of Q-learning [Jin et al., ‘18],
except replace max over Q values with computation of a CCE.

* One exception: Nash V-learning [Bai et al., 20]



Our goal: independent learning

* Independent protocol:

* Independent game oracle: Each episode i, players propose

-

\

i.e., Min player observes
@ @ .1 :
{(St AT )}OStST’

similarly for Max player.

~

)

licies nf): S -

A(A), T[gi): S — A(B), executed in game G, players observe states, their own

actions, rewards.

* Limited private storage: can only store policy parameter vector, O (1) past

trajectories.

* Not meant to be a formal definition (though our protocols clearly

satisfy above requirements).



Our protocol: independent policy gradient method

1. Players choose policy parametrizationsx » my,y » ), (x EX,y €Y

are parameter vectors).

{ We use e-greedy (direct) parametrization: e.g., X = A(A)°, my(a|s) = (1 — &)xgq +

Ex
|A|

|

2. Treat finding equilibrium as optimization problem: i.e., do stochastic

gradient descent-ascent (SGDA):
6D 1y (50 -, 0).
here gfcl), g§,l)

:ga(ci)] = Vulp (ﬂxa);ﬂy(i) )

W
E

y D My (y® +1,,957)
are unbiased gradient estimators:
E [gj(,l)

] = Vy Wb (0, 0 )

-

\_

Take 1, K1y,
(2-timescale
algorithm)

~

)

-

: : ) : ™
We use REINFORCE estimator: e.g., g,(cl) = ( 0 <t<T ’rt(l)) - 2.¢ Vy log nx(agl) | St(l)),
(Recall: trajectory (St(i), agi), rt(i)) observed by min player)
0<t=<T Y,




Main theorem: polynomial sample complexity

/Theorem IDFG ‘20]: Let € > 0 be given. Suppose both players follow SGDA with Iearning\

rates 1, = 610'5,17y = €°; then we have ““on-average convergence” for min player:
z max (nx(l),nz)] mln max V,(1,, ;) < € (*)
%)
1<isN -
4 . ) (|A|V|B|)1075|S|125C175
@rN < poly(e™, Cg, IS|, 1A, |B],{77). N=0 £1257485

* (¢ is distribution mismatch coefficient (occurs in 1-player setting too).

* We do not get guarantee (*) for max player () when learning rates
aren, = et? S,ny = €° (due to asymmetric nature).
* Indeed: in experiments, (*) does not hold for max player.

* Note: greedy parametrizations tuned to € as well: &, =< €,¢), = €.



Distribution mismatch coefficient

* For policy 4, let I15 (1r; ) be the set of best responses for agent 2;
similarly define II7 (1T, ).

e State visitation distribution:
Ay (s) % Bezg Pr (sp =5 |sg ~ p)

mq,TT
1,7

p p
o p

* Compare with typical C;, for a (1-agent) MDP [AKLM, ‘19]:

1,72
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o W1 M2€ll;(my)
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Proof overview of main theorem

1. Show that V,(m,,, ) satisfies a 2-sided gradient domination (GD)

condition.
* l.e,, for all x, function y = V, (7, ) satisfies a GD condition; and:

* Forally, function x = V,(y, ) satisfies a GD condition.

2. Show that 2-timescale SGDA converges for any objective f(x, y)
satisfying such a 2-sided GD condition.

Some prior work for item 2:

* [YKH, ‘20]: (deterministic) 2-timescale GDA converges under a 2-sided
PL condition (much stronger, allows linear rates)

* [LJJ, 20]: 2-timescale SGDA converges if f(x,y) is concave in y.



Last-iterate convergence: extragradient

* Korpelevich’s extragradient (EG) method (i.e., mirror-prox [Nemirovskii, ‘04]):

* Given f : X XY — [R; goal is to solve min max f (x,y):
x y

1 , , . 1 . . .
2D <10, (xa) —nf(x®, y(o)), y 2D« (D + 5f (x®, y®))

, . o1 o1 , , 1 o1
K1) I, (x(l) —nf (x(l+§)’y(l+§))) , y(l+1) — Hy(y(l) +nf (x(l+§)’ y(l+§)))

<
Theorem [Korpelevich, ‘76; FP, ‘01]: If f (x, y) satisfies the MVI property, then

the iterates (x(®, y(V) of EG converge to a Nash equilibrium(x*, y*).
N

Definition: MVI property means that for all Nash equilibria (x*, y*) of f,
(Vi f G, 9),x —x*) +(=Vy f(x, ),y —y") =0 V(x,y) €EX XY




Back to Markov games...

* Focus on single-state case with direct parametrization:
x =1, €EX = A(A), y=m, €Y = A(B)

 Game value is that of a ratio game: [von Neumann, “45]

EK~Ryb)~n [r(a b)] Ea~n b~n£[r(a b)]

V(e my) = (B1Sygame st%ﬁs p(waufé b~Try, [gf _PS(SO|SO'a b)]
Ty, Ty

P
Proposition [DFG, ‘20]: There exists an objective f(x,y) =

\A({l,Z}), which does not satisfy the MVI property.

-
Conjecture [DFG, ‘20]: For any R € [—1,1]™™, S € [, 1]™* "™, EG applied to

the function f(x,y) = gg]; (x € A([n]),y € A(Im])) converges to Nash eq.
N

(X,Ry)
(x,Sy)’

forx,y €

J




Other open problems: better rates, exploration

* Get better rates (ours are quite bad)

* Incorporate optimism (would also get rid of dependence on (), e.g., [ESRM,
20] for single agent setting.

* |ssue with above: hard to make that approach independent.

e Other directions in [AKLM, ‘20]: natural policy gradient, linear
function approximation.

* Multi-agent/non-zero-sum games.

Thank you!



