Near-Independent Policy Gradient Methods for Competitive Reinforcement Learning

Constantinos Daskalakis Dylan Foster Noah Golowich

Massachusetts Institute of Technology

Multi-agent reinforcement learning

Two-player zero-sum Markov games

- 2-player zero-sum Markov game: [Shapley, '53; Littman, '94]
 - $G = (S, A, B, P, r, \zeta, \rho).$
 - *S* is a finite set of **states**.
 - *A*, *B* are finite sets of actions for each player.
 - $\rho \in \Delta(S)$ is initial state distribution at time t = 0.
 - r(s, a, b) is reward function (A player wants to minimize reward, B player wants to maximize).
 - P(s'|s, a, b) is the transition probability matrix: given in state s and players take actions a, b, gives distribution for next state s'.
 - Stopping probability: $\zeta_{\{s,a,b\}} \coloneqq 1 \sum_{s' \in S} P(s'|s,a,b) > 0$.
 - Assume $\boldsymbol{\zeta} \coloneqq \min_{s,a,b} \boldsymbol{\zeta}_{\{s,a,b\}} > 0$; i.e., game stops after exp. $\leq 1/\zeta$ steps.

(Fun) examples of Markov games:

- Chess, Go (not stochastic, $\zeta = 0$)
- Backgammon ($\zeta = 0$)

- Above are **turn-based**, i.e., at each state only 1 agent can take actions that influence next state's distribution.
- *Example* of non-turn-based Markov game (still $\zeta = 0$):
 - Chess, except both players move simultaneously at each step:
 - If two players move a piece to the same square, choose one randomly to remove from the board.

Policies, value function

- Fix policies $\pi_1 : S \to \Delta(A), \pi_2 : S \to \Delta(B)$.
- Induced distribution of trajectories $(s_t, a_t, b_t, r_t)_{0 \le t \le T}$, where:
 - $s_0 \sim \rho$
 - $a_t \sim \pi_1(\cdot|s_t), b_t \sim \pi_2(\cdot|s_t)$
 - $r_t = r(s_t, a_t, b_t)$
 - $T \ge 0$ is last time step before game steps (T is random).

• Value function:

$$V_{\rho}(\pi_1, \pi_2) \coloneqq E_{\pi_1, \pi_2, \rho} \left[\sum_{0 \le t \le T} r(s_t, a_t, b_t) | s_0 \sim \rho \right]$$

Shapley's min-max theorem

• Theorem (Shapley, '53): There exists a Nash equilibrium in any Markov game, i.e., a policy tuple (π_1^*, π_2^*) so that:

$$V_{\rho(\pi_1^*,\pi_2)} \le V_{\rho}(\pi_1^*,\pi_2^*) \le V_{\rho}(\pi_1,\pi_2^*) \qquad \forall \pi_1,\pi_2$$

• In particular:

$$V_{\rho}^* \coloneqq \min_{\pi_1} \max_{\pi_2} V_{\rho}(\pi_1, \pi_2) = \max_{\pi_1} \min_{\pi_2} V_{\rho}(\pi_1, \pi_2)$$

Problem: given ability to play policies π_1, π_2 to sample trajectories, find $\hat{\pi}_1, \hat{\pi}_2$ so that

$$\max_{\pi_2} V_{\rho}(\hat{\pi}_1, \pi_2) - V_{\rho}(\pi_1^*, \pi_2^*) \le \epsilon$$
$$V_{\rho}(\pi_1^*, \pi_1^*) - \min V_{\rho}(\pi_1, \hat{\pi}_2) \le \epsilon$$

Prior work: centralized/coordinated protocols

- Most previous works take algos from single-agent setting and ``replace the maximum (of reward) with computation of Nash'':
 - VI-ULCB [Bai & Jin, '20]: take UCBVI [Azar et al., '17], compute upper + lower estimates of Q(s, a, b), find Nash eq. of each game Q(s, ., .).
 - VI-Explore [Bai & Jin, '20]: exploration phase to build a model of the game, then value iteration on the empirical model.
 - OMNI-VI [Qie et al., '20]: similar to LSVI-UCB [Jin et al., '19], except find a CCE of a game for each s as opposed to max of (optimistic) Q-values.
 - Nash Q-learning [Bai et al., '20]: similar to proof of *Q*-learning [Jin et al., '18], except replace max over *Q* values with computation of a CCE.
 - One exception: Nash V-learning [Bai et al., '20]

Our goal: independent learning

- Independent protocol:
 - Independent game oracle: Each episode *i*, players propose policies $\pi_1^{(i)}: S \rightarrow \Delta(A), \pi_2^{(i)}: S \rightarrow \Delta(B)$, executed in game *G*, players observe states, their own actions, rewards.
 - Limited private storage: can only store policy parameter vector, O(1) past trajectories.
- Not meant to be a formal definition (though our protocols clearly satisfy above requirements).

Our protocol: independent policy gradient method

1. Players choose **policy parametrizations** $x \mapsto \pi_x, y \mapsto \pi_y$ ($x \in X, y \in Y$ are parameter vectors).

We use ε -greedy (direct) parametrization: e.g., $X = \Delta(A)^S$, $\pi_{\chi}(a \mid s) \coloneqq (1 - \varepsilon_{\chi})x_{s,a} + \frac{\varepsilon_{\chi}}{|A|}$

2. Treat finding equilibrium as optimization problem: i.e., do stochastic gradient descent-ascent (SGDA): $x^{(i+1)} \leftarrow \Pi_X \left(x^{(i)} - \eta_x g_x^{(i)} \right), \qquad y^{(i+1)} \leftarrow \Pi_Y (y^{(i)} + \eta_y g_y^{(i)})$ (2-timescale algorithm)
Where $g_x^{(i)}$, $g_y^{(i)}$ are unbiased gradient estimators: $E\left[g_{\chi}^{(i)}\right] = \nabla_{\chi}V_{\rho}\left(\pi_{\chi^{(i)}}, \pi_{\gamma^{(i)}}\right), \qquad E\left[g_{\gamma}^{(i)}\right] = \nabla_{\gamma}V_{\rho}(\pi_{\chi^{(i)}}, \pi_{\gamma^{(i)}})$ We use REINFORCE estimator: e.g., $g_x^{(i)} \coloneqq \left(\sum_{0 \le t \le T} r_t^{(i)}\right) \cdot \sum_t \nabla_x \log \pi_x(a_t^{(i)} \mid s_t^{(i)})$, (Recall: trajectory $(s_t^{(i)}, a_t^{(i)}, r_t^{(i)})_{0 \le t \le T}$ observed by min player)

Main theorem: polynomial sample complexity

Theorem [DFG '20]: Let $\epsilon > 0$ be given. Suppose both players follow SGDA with learning rates $\eta_x \approx \epsilon^{10.5}, \eta_y \approx \epsilon^6$; then we have ``on-average convergence'' for min player: $E\left[\frac{1}{N} \cdot \sum_{1 \le i \le N} \max_{\pi_2} V_\rho(\pi_{x^{(i)}}, \pi_2)\right] - \min_{\pi_1} \max_{\pi_2} V_\rho(\pi_1, \pi_2) \le \epsilon \qquad (*)$ for $N \le poly(\epsilon^{-1}, C_G, |S|, |A|, |B|, \zeta^{-1})$.

- C_G is distribution mismatch coefficient (occurs in 1-player setting too).
- We *do not* get guarantee (*) for max player $\pi_{y^{(i)}}$ when learning rates are $\eta_x \cong \epsilon^{10.5}$, $\eta_y \cong \epsilon^6$ (due to asymmetric nature).
 - Indeed: in experiments, (*) does not hold for max player.
- Note: greedy parametrizations tuned to ϵ as well: $\varepsilon_x \simeq \epsilon, \varepsilon_y \simeq \epsilon^2$.

Distribution mismatch coefficient

- For policy π₁, let Π^{*}₂(π₁) be the set of best responses for agent 2; similarly define Π^{*}₁(π₂).
- State visitation distribution:

$$d_{\rho}^{\pi_{1},\pi_{2}}(s) \propto \sum_{t \ge 0} \Pr_{\pi_{1},\pi_{2}}(s_{t} = s | s_{0} \sim \rho)$$

• $C_{G} \coloneqq \max\{\max_{\pi_{2}} \min_{\pi_{1} \in \Pi_{1}^{*}(\pi_{2})} \left| \frac{d_{\rho}^{\pi_{1},\pi_{2}}}{\rho} \right|_{\infty}, \max_{\pi_{1}} \min_{\pi_{2} \in \Pi_{2}^{*}(\pi_{1})} \left| \frac{d_{\rho}^{\pi_{1},\pi_{2}}}{\rho} \right|_{\infty} \}.$

• Compare with typical C_M for a (1-agent) MDP [AKLM, '19]:

•
$$C_M \coloneqq \left| \frac{d_{\rho}^{\pi^*}}{\rho} \right|_{\infty}$$

Proof overview of main theorem

- 1. Show that $V_{\rho}(\pi_x, \pi_y)$ satisfies a 2-sided gradient domination (GD) condition.
 - I.e., for all x, function $y \mapsto V_{\rho}(\pi_x, \pi_y)$ satisfies a GD condition; and:
 - For all y, function $x \mapsto V_{\rho}(\pi_x, \pi_y)$ satisfies a GD condition.
- 2. Show that 2-timescale SGDA converges for any objective f(x, y) satisfying such a 2-sided GD condition.

Some prior work for item 2:

- [YKH, '20]: (deterministic) 2-timescale GDA converges under a 2-sided PL condition (much stronger, allows linear rates)
- [LJJ, '20]: 2-timescale SGDA converges if f(x, y) is concave in y.

Last-iterate convergence: extragradient

- Korpelevich's extragradient (EG) method (i.e., mirror-prox [Nemirovskii, '04]):
- Given $f : X \times Y \to \mathbb{R}$; goal is to solve $\min_{x} \max_{y} f(x, y)$:

$$\begin{aligned} x^{(i+\frac{1}{2})} &\leftarrow \Pi_X \left(x^{(i)} - \eta f \left(x^{(i)}, y^{(i)} \right) \right), \qquad y^{(i+\frac{1}{2})} \leftarrow \Pi_Y (y^{(i)} + \eta f \left(x^{(i)}, y^{(i)} \right)) \\ x^{(i+1)} &\leftarrow \Pi_X \left(x^{(i)} - \eta f \left(x^{(i+\frac{1}{2})}, y^{(i+\frac{1}{2})} \right) \right), y^{(i+1)} \leftarrow \Pi_Y (y^{(i)} + \eta f \left(x^{(i+\frac{1}{2})}, y^{(i+\frac{1}{2})} \right)) \end{aligned}$$

Theorem [Korpelevich, '76; FP, '01]: If f(x, y) satisfies the **MVI property**, then the iterates $(x^{(i)}, y^{(i)})$ of EG converge to a Nash equilibrium (x^*, y^*) .

Definition: MVI property means that for all Nash equilibria (x^*, y^*) of f, $\langle \nabla_x f(x, y), x - x^* \rangle + \langle -\nabla_y f(x, y), y - y^* \rangle \ge 0 \quad \forall (x, y) \in X \times Y$

Back to Markov games...

• Focus on single-state case with direct parametrization:

$$x = \pi_x \in X \coloneqq \Delta(A), \qquad y = \pi_y \in Y \coloneqq \Delta(B)$$

• Game value is that of a ratio game: [von Neumann, '45]

$$V(\pi_x, \pi_y) = \frac{k_{x_r} R_{y,b} - \pi_y [r(a, b)]}{\langle x_r, \pi_y \rangle} \xrightarrow{Rab}_{a \to b} = r(a, b), \qquad E_{a \sim \pi_x, b \sim \pi_y} [r(a, b)]$$

$$F(a, b), \qquad E_{a \sim \pi_x, b \sim \pi_y} [r(a, b)]$$

Proposition [DFG, '20]: There exists an objective $f(x, y) = \frac{\langle x, Ry \rangle}{\langle x, Sy \rangle}$, for $x, y \in \Delta(\{1, 2\})$, which does not satisfy the MVI property.

Conjecture [DFG, '20]: For any $R \in [-1,1]^{n \times m}$, $S \in [\zeta,1]^{n \times m}$, EG applied to the function $f(x,y) = \frac{\langle x, Ry \rangle}{\langle x, Sy \rangle}$ ($x \in \Delta([n]), y \in \Delta([m])$) converges to Nash eq.

Other open problems: better rates, exploration

- Get better rates (ours are quite bad)
 - Incorporate optimism (would also get rid of dependence on C_G), e.g., [ESRM, '20] for single agent setting.
 - Issue with above: hard to make that approach independent.
- Other directions in [AKLM, '20]: natural policy gradient, linear function approximation.
- Multi-agent/non-zero-sum games.

Thank you!