
Course notes for 6.S981: Approximate Counting and Sampling

Fall 2023

These are lecture notes I (Noah Golowich) have taken for the course “6.S891: Algorithm Count-
ing and Sampling”, taught by Kuikui Liu at MIT in the Fall of 2023. Please note that they are very
rough and have not been subjected to any sort of scrutiny or editing (and thus likely to contain
errors). Any errors are my own.

1 September 7, 2023

Suppose we have a huge space Ω (e.g., Rn, {−1, 1}n), as well as a function ω : Ω → R≥0. We are
interested with two problems:

1. Counting: compute Z :=
∑

x∈Ω ω(x).

2. Sammpling: sample random x ∈ Ω according to µ(x) ∼ ω(x), i.e., µ(x) = ω(x)/Z.

The above has many applications, including detecting gerrymandering (detect if a map is anoma-
lous), privacy, statistical inference (namely, if we have samples from a generative model P(X|θ),
we want to sample P(θ|X) ∝ P(X|θ) · P(θ), and we know P(X|θ) and the prior P(θ)), statistical
mechanics.

1.1 Complexity Theory

For counting problems, we have ]P. Given an NP problem L, we map it to the ]P problem ]L, which
is the problem of counting the number of solutions (i.e., which make the verifier accept). Given
SAT, we would map it to ]SAT , which asks for the number of satisfying solutions. A problem L is
]P-hard if any problem in ]P reduces to ]L. A problem is ]P-complete if it is ]P-hard and it is in
]P.

It turns out that ]SAT is ]P-complete (same Cook-Levin reduction, trace it through, and you
get that counting the number of solutions is ]P -hard). Surprisingly, not every ]P-complete problem
arises from a NP-hard problem.

Theorem 1.1 (Valiant). The problem of counting the number of bipartite perfect matchings is
]P-complete.

Edmonds (1970s) showed that the decision analogue, namely determining if a graph has a
perfect matching, is in P. But the counting analogue is hard.

As a corollary, we have:

Corollary 1.2. Computing the permanent of a matrix is ]P-hard.
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Recall that the permanent is defined by per(A) =
∑

σ∈Sn
∏
i∈[n]Ai,σ(i). (Recall that det(A) can

be computed in polynomial time.)
There are various counting problems which we can solve efficientlt:

Theorem 1.3 (Matrix tree theorem). Counting the number of spanning trees of a graph is efficient.
In particular, the number of spanning trees is det(L), where L is the Laplacian.

The course will focus on approximate versions of counting.

1.2 Approximate counting/sampling

Definition 1.1 (FPRAS). A fully poly-time randomized approximation scheme (FPRAS), on error
ε ∈ (0, 1), failure probability δ ∈ (0, 1), outputs Ẑ such that Pr((1− ε)Z ≤ Ẑ ≤ (1 + ε)Z) ≥ 1− δ,
in time poly(n, 1/ε, log 1/δ). Here n is a parameter which quantifies the input size.

As for sampling, we measure closeness by total variation distance: ‖µ− ν‖TV = 1
2

∑
x∈Ω |µ(x)−

ν(x)|.

Definition 1.2. An efficient sampling algorithm on input δ outputs a random variable X ∈ Ω such
that ‖Law(X)− µ‖TV ≤ δ in time poly(n, log 1/δ), where again n is the input size.

For a random variable X, we write Law(X) to denote the distribution of X.
Total variation distance is nice since

‖µ− ν‖TV = sup
f :X→[0,1]

|Eν [f ]− Eµ[f ]|.

1.3 Applications of sampling

Sampling seems more powerful than counting since, a priori, it seems to give more. Using Monte
Carlo method, you can approximate several statistics of the distribution µ.

In particular, given f : Ω→ [0, 1], if we want to compute Eµ[f ], the algorithm, given a sampler,
draws samples X1, . . . , Xt i.i.d. and outputs the empirical mean 1

t

∑t
i=1 f(Xi). We use Hoeffding

bound:

Theorem 1.4 (Hoeffding/Chernoff/Bernstein).

Pr

(∣∣∣∣∣ 1

T

T∑
i=1

f(Xi)− Eµ[f ]

∣∣∣∣∣ > ε · Eµ[f ]

)
≤ 2 exp

(
−ε

2T · Eµ[f ]

3

)
.

In particular, if we take T ≈ 1
ε2·Eµ(f)

·log 1/δ, then we can approximate Eµ[f ] up to an ε-fraction.

Note that we need Eµ[f ] to not be too small. If f is unbounded, but Varµ(f) <∞, thenwe should
use the “median of means” estimator. Namely, partition the sample into a bunch of subsets, and
use the median of means of the subsets. If we only have an approximate sampler (say have TV
error of ε′), then we incur an additional error of ε′.
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1.4 Equivalence of counting and sampling

Theorem 1.5 (Jerrum-Valiant-Vazirani). For “self-reducible” problems, there exists an FPRAS if
and only if there exists and efficient sampler.

Intuitively, self-reducibility means that we can decompose a counting/sampling problem into
many sub-problems of the same type.

We prove the above theorem for a special case, namely the problem of counting/sampling from
matchings. Let G = (V,E) be a graph, and let ΩG be the set of matchings M ⊂ E of G. Recall
that a matching is a subset of edges so that no vertex is incident to more than one vertex of G.
We take the weight function to be uniform over matchings.

In what sense is this problem self-reducible? For any e ∈ E, we can partition matchings based
on the membership of e:

1. Matchings containing e are in 1-1 correspondence with matchings of G\{u, v}. (Just add e
to a matching of G\{u, v}.)

2. Matchings not containing e are in 1-1 correspondence with G\{e} (remove e but keep its
endpoints).

Why is self-reducibility useful? For any edge e, we have PrM (e ∈ M) =
|ΩG−u−v |
|ΩG| . Thus,

rearranging, we have |ΩG| = 1
p(e) · |ΩG−u−v|. We can estimate p(e) = EM [1e ∈M ] using Monte-

Carlo methods. In particular, if we can estimate |ΩG−u−v|, then we can estimate |ΩG|. Similarly,
we have PrM (e 6∈M) = |ΩG−e|/|ΩG|, and so |ΩG| = 1/(1− p(e)) · |ΩG−e|, which is more convenient
since typically p(e) is small.

We first prove the following direction of the JVV theorem:

Proof that sampler implies FPRAS. We do this inductively. We order the edges e1, . . . , em arbi-
trarily. Define Gi = Gi−1 − ei, where G0 = G and Gm is empty, so that |ΩG0 | = 1. We have, by
the argument above,

|ΩG| =
m∏
i=1

|ΩGi−1 |
|ΩGi |

=

m∏
i=1

1

PrM∼Gi−1(ei 6∈M)
.

If we get a (1 ± ε/m)-approximation to all of the probabilities PrGi−1(ei 6∈ M), then we get a
(1 ± ε)-approximation to |ΩG. If we have an approximate sampler, we can use the monte carlo
method to get a (1 ± ε/m)-approximation to each of these probabilities: we need to make sure
that these probabilities are not too small. It is easy to see that PrM∼Gi−1(ei 6∈M) ≥ 1/2: for any
matching with edge e, there is a matching without edge e obtained by removing e.

Note that in general, we may not be able to show such a strong bound on the probability, but
in general we can estimate both and use whichever is bigger.

Next, we prove the other direction, which roughly speaking runs the above argument in reverse.

Proof that FPRAS implies sampler. Order the edges e1, . . . , em arbitrarily:

1. We can estimate Pr(e1 ∈M) = p1.

2. With probability p1 add e1 to the matching M̂ . Remove u1, v1, namely the endpoints of e1.

3. Otherwise, keep the matching M̂ .
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4. Continue with the remaining edges.

Let’s assume that the estimate of the edge probabilities are all good, up to error 1± δ/m. Let
M be any fixed matching. We want to analze the TVD between the random matching we generated
and the true matching. Define Ei as the event that ei has the “correct” status (i.e., the same status
as the edge ei in M). Then

Pr(M̂ = M) =
m∏
i=1

Pr(Ei|E1:i−1) ≤
m∏
i=1

(1 + δ/m) · pi ≤ (1 +O(δ)) · µ(M),

and similarly we have Pr(M̂ = M) ≥ (1 − O(δ)) · µ(M). Summing over all matchings M , we end

up with
∥∥∥Law(M̂)− µ

∥∥∥
TV
≤ O(δ).

Note that there’s one slight trick here: if we have a 1 ± ε-approximation to some probability
p, we don’t in general get a 1 ± ε-approximation to 1 − p. But this is true if p ≤ 1/2. Note that,
depending on whether each edge is in M , to compute Pr(Ei|Ei−1) we may need either PrM∼Gi(ei)
or 1−PrM∼Gi(ei), where Gi = Gi−1−ei with probability pi, and Gi = Gi−1−ui−vi with probability
1− pi.

(In the general, non-matching case, we should estimate both of these probabilities.)
There’s one issue with the above proof: the dependence on δ is poly(1/δ) since to estimate

the edge probabilities we need O(1/δ2) samples. To get log(1/δ) dependence, we add a rejection
sampling step:

Proof for log 1/δ sample complexity of sampling. Let η = c/m for some constant η. We gener-

ate M̂ as above. If M̂ is the output, then accept with probability c′ · µ(M̂)

ν(M̂)
, and otherwise

trye again, where ν = Law(M̂). Note that ν = Law(M̂) can be computed exactly since it
is given by

∏m
i=1 estimate of pi, which we computed exactly. Moreover, we can estimate µ(M̂)

since we have an FPRAS. Moreover, ignoring the error in this FPRAS, we get that, if we accept,
Pr(M̂) = ν(M̂) · (µ(M̂)/ν(M̂)) = µ(M̂), so the correct matching probability.

The final algorithm tries the above for O(log 1/δ) iterations: if we fail on all of them, then we
fail, and we eat this probability-δ of failure. What we need is that we accept on each iteration with
constant probability. To see this, as long as the failure probability is η, we have ‖µ− ν‖TV ≤ O(η).
Moreover, by inspecting the sampling argument above, we can ensure that, with, say, constant
probability over the estimates from sampling, we get a uniform bound on ‖µ/ν‖∞ ≤ 2, which
ensures that c′ can be taken to be, say, 1/2, and we will accept with constant probability.

The proof has to condition on the event that all our approximation errors are small enough:
the failure probabilities here account for the TV error:

• Chance of rejecting all propsed matchings (roughly log 1/δ of those).

• Chance of bad estimates (take care of this by making δ small).

Note that the probabilities pi are random, but we can just let ν be the distribution with whatever
probabilities pi we compute, and under the high-probability event we will have ν is sufficiently close
to µ.
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2 September 12, 2023

Remember that if µ, ν are probability measures on a set Ω, then we have the definition ‖µ− ν‖TV =
1
2

∑
x∈Ω |µ(x)− ν(x)|.

Lemma 2.1. It holds that ‖µ− ν‖TV = supf :Ω→[0,1] |Eµf − Eνf |.

We omit the proof.

Examples of models we’ll discuss in this course.

1. For A ∈ Rn×n, β ∈ R, Ω = {±1}n, we have the Ising model

µ(σ) ∝ exp

(
β

2
σ>Aσ

)
.

2. More generally, we have graphical models: Ω = [q]V , G = (V,E), so that Ω is a space of
configurations. For each edge we have a mapping from the configurations of its endpoints to
R, namely {ψe : [q]× [q]→ R}. Then the Hamiltonian is, for σ ∈ [q]V (i.e., an assignment of
vertices),

H(σ) =
∑

e=(u,v)

ψe(σ(u), σ(v)),

and we have µ(σ) ∝ exp(β · H(σ)). We can recover the Ising model by taking Ω = {±1}n
and ψuv = Auv · σ(u) · σ(v).

Another example is to take µ uniform over proper colorings. Here we map illegal configu-
rations (i.e., adjacent vertices of the same color) to −∞. Other examples is uniform over
independent sets, or uniform over matchings.

To model matchings, we consider a graph G and consider the line graph L(G), whose vertices
are edges of G. To sample matchings of G we sample an independent set of L(G).

3. Spanning trees in graphs (matroids).

2.1 Rejection sampling argument for counting impiles sampling

Remember that the sampling argument was as follows: we order the edges e1, . . . , em ∈ E. We
use the approximate counting argument to estimate q1 := PrM [e1 ∈ M ] = |ΩG−u1−v1 |/|ΩG|. Then
decide to add e1 to the matching with probability q1, and delete u1, v1; otherwise, we delete e1.

The naive argument leads to poly 1/δ dependence; to get poly log 1/δ, we need to do rejection
sampling. Here’s a cleaner argument for that step: consider a big tree where at each step we branch
into the cases where we add ei or don’t add ei, and end up in the appropriate graph. Note that the
probabilities q2, . . . depend on choices we’ve made in the previous step (as they affect the current
graph), but we omit this dependence.

Imagine that someone has precomputed all probabilities in the tree, and that, along our (ran-
dom) path in the tree, we just query the probabilities qi along that path. If everything is deter-
ministic, this defines some well-defined distribution over matchings, and we do rejection sampling
over that distribution.
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In particular, for all estimates ~q of the probabilities, we get a distribution ν~q over matchings. If
we have sampled M , then we have a sample from ν~q(M) exactly. If instead the probabilities ~q are
random, then all of this is random over the probabilities ~q, but nothing else changes. The rejection
sampling step is based off of the probabilities v~q(M), though note that to show L∞ boundedness
of the ratio µ/ν, we need to condition on the (high) probability event that the estimates v~q(M)
are all sufficiently accurate, and then use the simple telescoping argument presented last time. (In
fact, it seems that we only need this to be ae constant probability event for the argument to work.)

2.2 Markov chains

At a high level, we have some complicated µ we want to sample from: we start with an arbitrary
X ∈ Ω, and (via a MC) we want to add enoug hrandomness in the right ways.

Definition 2.1 (Markov chain). A matrix P ∈ RΩ×Ω
≥0 sampling

∑
y∈Ω P (x → y) = 1 is a Markov

chain (MC).

A MC generates a stochastic process (Xt)
∞
t=0 so that

Pr(Xt+1 = y|Xt = x) = P (x→ y).

The MCMC Paradigm is as follows: design some P so that Law(Pt)→ µ as t→∞. Note that
Law(Pt) = µ0 · P t, where µ0 = Law(X0).

Definition 2.2 (Stationary distribution). A distribution µ is stationary wrt P is µP = µ.

Examples:

• For G = (V,E), we start out at some v ∈ V , we transform to a uniformly random neighbor
of u. In particular, PG = D−1

G ·AG, where DG is the diagonal matrix of vertex degrees. It is
straightforward to see that µ(v) ∝ deg(v) is the stationary distribution.

Note that if G is disconnected, we cannot possibly have a unique stationary distribution. (If
we start from one component, we will never end up at the other one.) Also note that if G is
bipartite, we will not converge to a stationary distribution (we will oscillate between the two
sides at each step indefinitely). In some sense, these are the only two obstacles to convergence
to a unique stationary distribution (formalized below).

Definition 2.3 (Ergodicity). P is ergodic if:

1. It is irreducible: for all x, y ∈ Ω, there exists t so that P t(x, y) > 0 (this is just connectivity
in the above example).

2. If is aperiodic: for all x ∈ Ω, gcd{t : P t(x, x) > 0} = 1. (This rules out, e.g., bipartite
graphs.)

Note that to ensure aperiodicty, it suffices to ensure that P (x, x) > 0 for all x. In particular,
given P , we replace it with (I + P )/2, which inherits all useful properties of P and is aperiodic.
Note also that ergodicity can be more simply defined as: for all x, y ∈ Ω, there exists N so that for
all t > N , P t(x, y) > 0. Or more generally, there exists t so that for all x, y ∈ Ω, P t(x→ y) > 0.

Theorem 2.2 (Fundamental theorem of MCs). If P is ergodic, then there is a unique stationary
distribution µ. Moreover, for all x ∈ Ω,

∥∥δx · P t − µ∥∥TV → 0 as t→∞.
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Often designing Markov chains with goal staitonary distributions is challenging. But there is
one easy condition under which we can do this:

Definition 2.4 (Reversibility). We say that µ is reversible wrt P if for all x, y ∈ Ω,

µ(x) · P (x→ y) = µ(y) · P (y → x).

Example: simple random walk on undirected graph. This is a useful condition since it has that
up to some rescaling, the matrix P is symmetric, so its eigenvalues are real, etc. Note that if µ is
reversible wrt P , then it is the stationary distribution.

Here’s an easy recipe for constructing Markov chains corresponding to distributions µ. Suppose
µ(x) ∝ w(x) on Ω, where we can compute w(x). (E.g., w(x) is the exponential of the Hamiltonian,
for graphical models.) We start with a symmetric Markov chain Q on Ω (i.e., Q(x→ y) = Q(y →
x)). We then ahve the following filter step:

• We accept a proposal x (i.e., Xt+1 = x) with probability min{1, w(x)
w(Xt)

}.

• Otherwise, stay with Xt+1 = Xt.

In particular, we have defined

P (x→ y) = Q(x→ y) ·min

{
1,
w(y)

w(x)

}
,

for y 6= x, and we stay on x with the remaining probability.

Lemma 2.3. For all Q, the Metropolis filter wrt w leads to a P that is reversible wrt µ.

Proof. Calculation.

Example: Glauber dynamics Consider µ on {±1}n. For σ ∈ {±1}n and i ∈ [n], write σ⊕i to
denote σ with the ith bit flipped. Then the Glauber dynamics is defined as follows:

1. Pick i ∼ [n] uniformly.

2. Flip i w.p. µ(σ⊕i)
µ(σ)+µ(σ⊕i)

, and otherwise stay at σ. Note that µ(σ), µ(σ⊕i) above can be replaced

by w(σ), w(σ⊕i) since Z cancels.

It is straightforward to check that the above µ is reversible wrt the Glauber dynamics MC.

Mixing time.

Definition 2.5 (Mixing time). For ε ∈ (0, 1), define the mixing time τ(ε) to be the maximum over
all x ∈ Ω of the minimum t so that

∥∥δx · P t − µ∥∥TV ≤ ε. In other words,

τ(ε) = sup
x∈Ω

min{t :
∥∥δxP t − µ∥∥TV ≤ ε}.

Note that total variation distance between µ, ν always decreases at each step of the Markov
chain.
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3 September 14, 2023

3.1 Coupling and spectral methods

Definition 3.1. Given distributions µ, ν on Ω, a distribution ξ on Ω×Ω is a coupling if
∑

y ξ(x, y) =
µ(x) and

∑
x ξ(x, y) = ν(y) for all y.

There is always a coupling since we can take ξ(x, y) = µ(x)ν(y).

Lemma 3.1 (Coupling). ‖µ− ν‖TV = infξ Prξ(x 6= y).

Proof. For the upper bound

‖µ− ν‖TV =
∑

x:µ(x)>ν(x)

(µ(x)−ν(x)) =
∑
x

(µ(x)−min{µ(x), ν(x)}) = 1−
∑
x

min{µ(x), ν(x)} ≤ 1−
∑
x

ξ(x, x),

where the inequality follows since ξ(x, x) ≤ min{µ(x), ν(x)} by the coupling constraints.
for the reverse direction, we want to show that there exists a coupling ξ so that ξ(x, x) =

min{µ(x), ν(x)}. Now define A = {x : µ(x) > ν(x)}, B = {x : µ(x) < ν(x)}, and let C be
everything else. By the design of the coupling, all sub-matrices except the A×B one have to have
all zeros (except the diagonal, which is populated with min{µ(x), ν(x)}). In particular, we need to
design a A×B matrix M so that ∑

y∈B
M(x, y) = µ(x)− ν(x)

for all x ∈ A and ∑
x∈A

M(x, y) = ν(y)− µ(y)

for all y ∈ B. It turns out that we can find a distribution M as required but we don’t do the details.
(Or, see Proposition 4.7 of the Markov Chain and Mixing Time book for a different perpsective.)

Definition 3.2 (Coupling of MCs). A coupling for a Markov chain P is a stochastic process
(Xt, Yt)

∞
t=0 on Ω×Ω so that Pr(Xt+1 = b|Xt = a) = P (a→ b) and Pr(Yt+1 = b|Yt = a) = P (a→ b).

A trivial coupling is the identity coupling: Xt = Yt for all t.
We say that a coupling is Markovian if Pr(Xt+1 = c|Xt = a, Yt = b) = Pr(a → b), and

Pr(Yt+1 = c|Xt = a, Yt = b) = Pr(b → c). We can think of this in the following alternative way:
for all (x, y) ∈ Ω2, we couple P (x→ ·), P (y → ·).

Lemma 3.2. Suppose P is a Markov chain, X0 ∼ µ0, Y0 ∼ µ, then∥∥µ0P
t − µ

∥∥
TV
≤ Pr(Xt 6= Yt)

for any coupling of P .
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Example: simple random walk on {±1}n. Define a coupling as follows: for Xt, Yt ∈ {±1}n,
we (a) choose the same uniformly random coordinate i ∈ [n]; (b) Toss the same coin. Note that if
Xt(i) = Yt(i) for some t, then for all t′ ≥ t, Xt′(i) = Yt′(i). By the coupon collector problem, Xt, Yt
coalesce in time 1

2n log n+ cn with probability 1− e−c.
Recall the fundamental theorem:

Theorem 3.3. If P is ergodic, then P has a unique stationary distribution µ, and for all x ∈ Ω,∥∥δxP t − µ∥∥TV → 0 as t→∞.

Proof. First we show there exists a stationary distribution, which is an eigenvalue problem. Since
P1 = 1 and a matrix has the same eigenvalues as its transpose, we can find some v ∈ RΩ so
that vP = v. Using the Perron-Frobenius theorem, we get that in fact v has to have non-negative
entries, which implies that by normalizing it, we get a stationary distribution.

Note that if the theorem is true, then convergence tells us we must have uniqueness of the
stationary distribution.

So the main nontrivial thing is to show convergence. The idea is to use: there exists t? so that
P t

?
(x→ y) > 0 for all x, y ∈ Ω. In particular, ε := minx,y P

t?(x→ y) > 0.
Thus, if we couple two copies of P k·t

?
for any k ∈ N, there is always an ε probability of

coalescence. So, with probability 1, the two chains eventually hit, and once the two things in the
coupling hit each other, they will be equal at all timesteps.

3.2 Constructing good couplings

At a high level: we want to define some graph on Ω and couple P (x → ·), P (y → ·) for neighbors
x, y. Then we extend this by a “composition” technique to a full coupling.

Lemma 3.4 (Composition). If µ1, µ2, µ3 ∈ ∆(Ω) and we have couplings ξ12, ξ23 between (µ1, µ2), (µ2, µ3),

respectively, then ξ13(x, z) :=
∑

y
ξ12(x,y)ξ23(y,z)

µ2(y) is a valid coupling of (µ1, µ3).

Proof. Computation.

Theorem 3.5 (Bubley-Dyer). Let E ⊂
(

Ω
2

)
be so that (Ω, E) is a graph. There exists α > 0 so

that the following holds. If for all neighbors x, y, there exists a coupling of P (x → ·), P (y → ·) so
that

E[d(Xt+1, Yt+1)|Xt ∼ Yt] ≤ 1− α,

then we have Tmix(ε) ≤ O
(

1
α log(D/ε)

)
, where D denotes the diameter of the graph and d(·, ·)

denotes distance on the graph.

Proof. LetXt, Yt ∈ Ω (not necessarily neighbors). Let Z
(i)
t be defined as follows: Xt = Z

(0)
t , . . . , Yt =

Z
(d)
t denotes a shortest path between Xt, Yt. We want a coupling so that

E[d(Xt+1, Yt+1)|Xt, Yt] ≤ (1− α) · d(Xt, Yt).

Using the composition of couplings lemma and triangle inequality, we get that there is a coupling
between P (Xt → ·) and P (Yt → ·) so that

E[d(Xt+1, Yt+1)|Xt, Yt] ≤
d−1∑
j=0

E[d(Z
(j+1)
t+1 , Z

(j)
t+1)|Z(j)

t , Z
(j1)
t ] ≤

d−1∑
j=0

d(Z
(j)
t , Z

(j+1)
t ) ≤ (1− α) · d(Xt, Yt),
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where we write d = d(Xt, Yt).
The above argument tells us that d(µ, ν) := infξ E(x,y)∼ξd(x, y) ≥ ‖µ− ν‖TV is contracting at

rate 1 − α. Thus, we get the mixing result. (Here d(µ, ν) is the Wasserstein distance, studied in
optimal transport.)

3.3 Application: graph colorings

Recall that a q-coloring of a graph is an assignment χ : V → [q] so that adjacent vertices have
different colors. We will always assume q ≥ ∆ + 1 where ∆ denotes maximal degree (otherwise it
becomes hard to find a coloring).

We consider the Glauber dynamics here: If we are at a coloring χt, then:

1. Pick v ∼ V uniformly at random.

2. Out of the colors available to v (namely all colors not given to neighbors of v), choose one
such c uniformly.

3. Set χt+1(v) = c and χt+1(u) = χt(u) for all u 6= v.

Theorem 3.6 (Jerrum ’95). If q ≥ 2∆ + 1, then Tmix(ε) ≤ O(qn log(n/ε)).

The upper bound on mixing time is essentially as good as you can hope for. Note that you
need q ≥ ∆ + 2 for Glauber to be ergodic. (For instance, consider the complete graph K∆+1 – each
coloring has no neighborrs.) Some remarks (there has been much recent work on this question):

• If q ≤ ∆, then there is no FPRAS unless RP = NP.

• A major conjecture is that if q ≥ ∆ + 1 there is a FPRAS; and if q ≥ ∆ + 2, then you have
O(n log n) mixing.

Now we prove the above theorem:

Proof. We have to construct a coupling when χt, χ
′
t differ on a unique vertex v ∈ V . We argue as

follows: We can ensure that we select the same update vertex u: We need to couple unif([q]\{χt(w) :
w ∼ u}) and unif([q]\{χ′t(w) : w ∼ u}).

We consider various cases for the relation between u and vertex v (the unique vertex at which
χt, χ

′
t disagree).

• If u 6∈ N(v)∪{v}, then c = c′, as the two distributions we want to couple are identical, so we
can ensure that the new color is identical between the coupled processes.

• Another good case is u = v: here we destroy all disagreement since again the two distributions
we want to couple are identical, so that the two coloring at the next time step are in fact
equal!

• The bad case is that we choose a vertex u that is a neighbor of v: there might be a disagreement
in the set of available colors: in particular, looking at the set of available colors availble to
u, there will be at most 2 differences, since χ′t(v) 6= χt(v). We can couple the two uniform
distributions so that they only differ in at most 1 slot of the set of available colors (namely,
the slots corresponding to χ′t(v), χt(v)). (You also have to deal with the fact that the sets of
available colors differ in size: you can handle it in the same manner.)

10



We now analyze the contraction as follows;

E[d(χt+1, χ
′
t+1)|χt, χ′t] ≤

n−∆− 1

n
+ 2 · ∆

n
· 1

q −∆
+

∆

n
· q −∆− 1

q −∆
= 1− q − 2∆

q −∆
· 1

n
< 1,

where the final inequality holds if q ≥ 2∆ + 1. Above, the first term deals with the n − ∆ − 1
vertices in V \N(v) ∪ {v}, for which the distance remains 1; the second term deals with the ∆
vertices in N(v) for which the distance increases to 2 with probability 1/(q − ∆), as the number
of available colors is at least q − ∆ and the two lists of available colors differ in at most a single
slot; and the third term dea lwit hthe ∆ vertices in N(v) for which the distance stays at 1 with
probability 1 − 1/(q −∆), again due to our coupling as constructed above. Note that technically
we have assumed that the degree of v is ∆, though more generally we’re fine by monotonicity.

If q ≥ 2∆ + 1, then we can take α ≥ 1/((q − ∆)n) = Ω(1/(qn)) in Theorem 3.5, and, using
that the diameter of the colorings graph is at most n, we get the desired bound O(qn log(n/ε)) on
mixing time.

4 September 19, 2023

Today: we talk about spectral/conductance methods. Consider the Ferromagnetic Ising Model:
given a graph G = (V,E) and β > 0, we want to sample from

µ(σ) ∝ exp

(
β

2
σ>Aσ + h · 〈σ,1〉

)
∀σ ∈ {±1}V .

Theorem 4.1 (Jerrum-Sinclair). For all G, β, h, there exists as FPRAS for computing ZG(β, h) =∑
σ exp

(
β
2σ
>Aσ + h · 〈σ,1〉

)
. (Thus you can efficiently do sampling as well.)

4.1 Spectral methods

Suppose we have a distribution µ on Ω. This induces a weighted inner product on RΩ, given by
〈f, g〉µ = EX∼µ[f(x)g(x)].

Lemma 4.2. P is reversible wrt µ iff P is self-adjoint wrt 〈·, ·〉µ.

Proof. We have 〈δx, P δy〉µ = P (y → x) · µ(y) and 〈δy, P δx〉µ = P (x → y) · µ(x). Then extend to
inner products on all vectors by linearity.

Since P is self-adjoint with respect to this inner product, we have that all eigenvlaues of P are
real. We can order the eigenvalues by −1 ≤ λ|Ω| ≤ · · · ≤ λ2 ≤ λ1 = 1. Irreducibility corresponds
to λ2 < 1, and aperiodicity corresponds to λn > −1.

Define λ∗ := maxi>1 |λi| = max{λ2, |λn|}.
We have the following quantitative bound on mixing time:

Theorem 4.3. If P is ergodic and reversible, then for all ε > 0,

Tmix(ε) ≤ 1

1− λ∗
· log

1

εµmin
,

where µmin = minx:µ(x)>0 µ(x).

11



We remark that there is also a lower bound showing that you must have:

Tmix(ε) ≥ 1

1− λ∗
log

1

2ε
.

The idea of proof is to bounds things in terms of χ2 divergence and thne relate it to TVD. Now,

χ2(ν||µ) = Vµ(dν/dµ) = EX∼µ

[∣∣∣∣ν(x)

µ(x)
− 1

∣∣∣∣2
]
.

We have the following standard fact:

Lemma 4.4. ‖µ− ν‖2TV ≤
1
4χ

2(ν||µ).

Understanding the spectral gap via the Poincaré inequality. Given f : Ω → R, we can
define the following quadratic form:

EP (f, f) = 〈f, (I − P )f〉µ =
1

2

∑
x,y∈Ω

µ(x)P (x→ y) · (f(x)− f(y))2.

We say that P satisfies the Poincare inequality with constant α if for all f , α · Vµ(f) ≤ EP (f, f).
We have:

Lemma 4.5. 1− λ∗ = inff
EP (f,f)
Vµ(f) . Thus, 1− λ∗ is the best constant you can put in the Poincare

inequality.

Recall that
Tmix(ε) = max

x∈Ω
min{t ≥ 0 :

∥∥δxP t − µ∥∥TV ≤ ε}.
Proof of Theorem 4.3. Let f = dδx/dµ for some x ∈ Ω. Note that ‖f‖∞ ≤ 1/µmin. In light of the
definition of χ2 divergence above, it suffices to prove that

Vµ
(
d(νP t)

dµ

)
= Vµ(P tf) ≤ λ2t

∗ · Vµ(f) ≤ λ2t
∗ ·

1

µmin
∀f.

(Note that P t dνdµ = d(νP t)
dµ holds by reversibility, since, for ν = δx, it is equivalent to P t(y→x)

µ(x) =
P t(x→y)
µ(y) for all y.) We have that Vµ(f) = 〈f, f〉 − 〈f,1〉2µ. Now we can write

Vµ(f)− Vµ(Pf) = 〈f, f〉µ − 〈f,1〉2µ − 〈Pf, Pf〉µ + 〈Pf,1〉2µ = 〈f, (I − P 2)f〉µ.

The eigenvalues of P 2 are the squares of the eigenvlaues of P , so we have from the Poincare
inequality

〈f, (I − P 2)f〉µ ≥ (1− λ2
∗) · Vµ(f).

Thus Vµ(Pf) ≤ λ2
∗ · Vµ(f). Now use induction on t.

12



4.2 Combinatorial methods to bound λ∗.

Definition 4.1 (Conductance). For S ⊂ Ω, define

Φ(S) =
∑

x∈S,y 6∈S
µ(x)P (x→ y),

where µ(S) =
∑

x∈S µ(x).

We now define Φ(P ) = infS:µ(S)≤1/2 Φ(S). If conductance is lower, there is a set which it is
hard to “escape from”.

Theorem 4.6 (Cheeger’s inequality). Φ(P )2/2 ≤ 1− λ∗ ≤ 2Φ(P ).

The conductance is useful for proving lower bounds on mixing: we just need to find some S for
which Φ(S) is small, which shows that 1− λ∗ is small.

4.3 Flows/paths

For all x, y ∈ Ω, suppose that to it we have associated a path from x to y in Ω, denoted Px→y. The
idea is to route µ(x)µ(y) “goods” from x → y using the transititions in P . Each transition a → b
has cost µ(a) · P (a→ b). We quantify the efficiency by:

• maxx,y |Px→y|.

• maxa→bCP (a→ b), where CP (a→ b) = 1
µ(a)·P (a→b)

∑
x,y:(a→b)∈Px→y µ(x)µ(y).

Theorem 4.7. For all {Px→y}x,y, it holds that

1

1− λ2
≤ max

x,y
|Px→y| ·max

a→b
CP (a, b).

Proof. Note the following two expressions that appear in the Poincare inequality:

Vµ(f) =
1

2

∑
x,y

µ(x)µ(y)(f(x)− f(y))2

EP (f, f) =
1

2

∑
x,y

µ(x)P (x→ y)(f(x)− f(y))2

Now we have f(x)− f(y) =
∑

(a→b)∈Px→y f(a)− f(b), so we have (from C-S)

Vµ(f) ≤max
x,y
|Px→y| ·

1

2

∑
x,y

µ(x)µ(y)
∑

(a→b)∈Px→y

(f(a)− f(b))2

=
1

2
max
x,y
|Px→y|

∑
a→b

(f(a)− f(b))2
∑

x,y:(a→b)∈Px→y

µ(x)µ(y).

The inner summation is CP (a → b) · µ(a)P (a → b), and this gives us that the above is upper
bounded by

max |Px→y| ·max
a→b

CP (a→ b) · 1

2

∑
a,b

µ(a)P (a→ b)(f(a)− f(b))2.

The desired lemma statmeent follows by the Poincare inequality.
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Usually, bounding the length of the path |Px→y| is easy: the challenging part is bounding the
congestion CP (a, b).

Example: µ is uniform on {±1}n. Let’s order the coordinates 1, . . . , n. Given x, y ∈ {±1}n,
we define a path Px→y by flipping the coordinates in order (if they’re not already equal). This leads
to |Px→y| ≤ n. We just need to understand the congestion. Fix a→ b which corresponds to flipping
coordinate k. Note that CP (a→ b) ≤ C if and only if |{(x, y) : (a→ b) ∈ Px→y}| ≤ C · n. Given a
path of the form x, . . . , a→ b, · · · y, note that x must agree with b on coordinates k + 1, . . . , n and
y must agree with a on coordinates 1, . . . , k. The number of choices for y is 2n−k and the number
of choices for x is 2k, so the number of possibly {x, y} is at most 2n. So, we can take C = O(1).
Summarizing CP (a→ b) ≤ n and |Px→y| ≤ n, meaning that 1−λ∗ ≥ 1/n2. This doesn’t quite give
us the right answer (mixing time should be O(n), not O(n2)). If we plug this into Theorem 4.3
then using that log 1/µmin = n, we get mixing time of O(n3), which is very far off. Recall from last
class we can get O(n log n) using coupling.

4.4 Ferromagnetic Ising model

One natural attempt is to run the Glauber dynamics directly for µ. This may work when β is small
(since the quadratic form looks roughly linear). But, it will fail for large β, where Tmix ≥ exp(Ω(n)).
This is because you, e.g., won’t transition between a component where most vertices are +1 and a
component where most vertices are −1.

The fix is to transform µ: let 0 ≤ ρ, λ ≤ 1 be two parameters. Define µ̂ on 2E by µ̂(F ) ∝
ρ|odd(F )| · λ|F |, where odd(F ) is the set of odd-degree vertices in (V, F ). We are penalizing subsets
F that induces lots of odd-degree vertices.

Now we define ẐG(ρ, λ) =
∑

F⊂E ρ
|odd(F )|λ|F |.

Proposition 4.8. For all β, h, let ρ = tanh(β), λ = tanh(h). Then ZG(β, h) = C(β, h) · ẐG(ρ, λ),
where

C(β, h) = 2|V | cosh(h)|V | cosh(β)|E|.

The idea is that roughly speaking, by flipping all the signs from some configuration that has
high probability under µ, you can get another configuration that has high probability. One we
have this, we can sample from the modified distribution, compute its partition function, and then
use the above proposition to transform back to the ferromagnetic Ising model. To prove the above
proposition:

Proof. Assume h = 0 for convenience. The key identity is that ex = cosh(x) · (1 + tanh(x)). Now
we can write

exp(β/2 · σ>Aσ) =
∏
uv∈E

exp(βσuσv) = cosh(β)|E|
∏
uv∈E

(1 + σuσv tanh(β)),

where the second inequality uses that tanh is an odd function. Now we have∏
uv∈E

(1 + σuσv tanh(β)) =
∑
F⊂E

tanh(β)|F |
∏

v∈odd(F )

σu,
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since vertices with even degree have the corresponding product of σu cancel out to 1. Now we sum
over all configurations:

ZG(β, 0) =
∑
σ

exp(β/2 · σ>Aσ) = 2n cosh(β)|E|
∑
F⊂E

tanh(β)|F | · Eσ∼{±1}n

 ∏
v∈odd(F )

σv

 .
The product on the RHS is 1 if odd(F ) = ∅, and 0 otherwise. Now

C(β, 0) · ẐG(ρ, λ) = 2n · cosh(β)|E| ·
∑
F⊂E

tanh(β)|odd(F )| · 1{|odd(F )| = 0},

since λ = 0, which by inspection we see is equal to ZG(β, 0). The case of general h ∈ R is similar
(see the class notes).

5 September 21, 2023

Recall Proposition 4.8, which allows us to reduce sampling from the Ferromagnetic Ising model to
computing the partition function for the distribution µ̂(F ) ∝ ρ|odd(F )| ·λ|F |. Today we do this latter
task:

Theorem 5.1. For the Glauber dynamics for µ̂, Tmix(ε) ≤ O
(
m2

ρ6 · (m+ log 1/ε)
)

.

Note that we need some dependence on ρ: if we consider the cycle, then as ρ→ 0, most of the
mass is concentrated on the empty set and the set of all vertices, which are far apart. So, there
must be some 1/ρ dependence.

Remark. Note that it’s not clear that µ̂ is self-reducible, so whether the counting-sampling
equivalence works is not clear. We handel this later.

5.1 Flow encodings

Let’s fix a collection of paths Px→y for each pair (x, y). Define CP (a → b) = {(x, y) : (a → b) ∈
Px→y}. The main challenge is bounding

∑
(x,y)∈CP (a→b) µ(x)µ(y) by poly(n) · µ(a) · P (a→ b).

Definition 5.1 (Flow encoding). A flow encoding is a collection of mappings {ηa→b : CP (a →
b)→ Ω}a→b, where ηa→b are all injective.

Lemma 5.2. If we have a flow encoding {ηa→b : CP (a→ b)→ Ω} so that for all transitions a→ b,
for all (x, y) ∈ CP (a→ b),

µ(x)µ(y) ≤ α · µ(a)P (a→ b) · µ(ηa→b(x, y)),

then the congestion CP (a→ b) ≤ α.

Proof. We have∑
(x,y)∈CP (a→b)

µ(x)µ(y) ≤ αµ(a)P (a→ b)
∑

(x,y)∈CP (a→b)

µ(ηa→b(x, y)) ≤ αµ(a)P (a→ b),

where the final inequality uses that
∑

(x,y)∈CP (a→b) µ(ηa→b(x, y)) ≤ 1 by injectivity of ηa→b.
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Example: hypercube. Remember that, given a→ b, to get from x to y, we first flip coordinates
1 . . . k − 1, then we flip a → b at coordinate k, and then we flip k + 1 . . . n. A way to get from y
to x is to flip 1 . . . k − 1, then are at a′, flip k to get to b′, then flip k + 1 . . . n. There is a sort of
duality between (a, b) and (a′, b′) here. So we could define ηa→b(x, y) = a′. This turns out to be a
good choice.

Now we prove the main theorem:

Proof of Theorem 5.1. Consider subsets I, F ⊂ E, and denote their symmetric difference by I⊕F ⊂
E. We can break I ⊕ F into a collection of paths and cycles which are all edge-disjoint, so that
the number of paths in this collection is equal to half the number of odd degree vertices: i.e.,
2|{paths}| = |odd(I ⊕ F )|. (In particular, if there are any odd-degree vertices, take a path from
one odd-degree vertex to another. Repeat until no odd-degree vertices left, and then we can find a
cycle.)

Defining Px→y. The idea in constructing Px→y is to “flip in order of traversal of the paths
and cycles”. We illustrate with an example. Suppose G is a graph on 5 vertices with edges
12, 23, 34, 41, 15, 52. Suppose I has edges 23, 34, 41 and F has edges 41, 12, 23, 15, 52. then I ⊕F is
12, 25, 51, 34. The decomposition of I ⊕ F is a path 34 and a cycle 12, 25, 51. Then the path from
I to F is (where we write the edges that we are flipping)

34, 15, 12, 52.

The probabilities of the respective subsets are µ̂(I) ∝ ρ2λ3, ρ4λ2, ρ4λ3, ρ4λ4, ρ4λ5 ∝ µ̂(F ).
Note that we can also flip going from F to I using the same order of edges we flip (i.e.,

34, 15, 12, 52).

Defining the flow encoding. Given I → · · · → A →ek B → · · · → F , we define the flow
encoding to be

ηA→B(I, F ) = I ⊕ F ⊕ (A ∪B).

We could have replaced A ∪B with the larger of A,B, though the above gives us a better bound.
Note that this is exactly as we did in the hypercube example above.

To prove injectivity, suppose htat M ∈ image(ηA→B). We can definitely recover I ⊕ F =
M ⊕ (A∪B), since A,B are fixed. Note that for each pair (I, F ) we have chosen a canonical order
on the edges we’re flipping (i.e., for each I ⊕F , which we know, there is a canonical ordering). We
just need to know which point on this canonical path we’re at: but this point is defined by the
edge ek = A ⊕ B that we’re flipping at this step. More precisely, if the sequence of edges we flip
to get from I to F is e1, . . . , en, then we know that B agrees with I on ek+1, . . . , en and with F on
e1, . . . , ek. So, once we know ek, we can flip ek, ek+1, . . . , en to get to F and flip e1, . . . , ek−1 to get
to I.

Congestion bound. We claim that the hypothesis of Lemma 5.2 holds with α = m/ρ6. The
first claim is that

µ(A) · P (A→ B) ≥ ρ2

m
· µ(A ∪B).

To prove this, since A,B differ on one edge, we have by reversibility that µ(A) · P (A → B) =
µ(A∪B)·P (A∪B → A∩B). SinceA∪B is bigger thanA∩B, we have that P (A∪B → A∩B) ≥ ρ2/M
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(with the 1/m factor coming from the fact that we choose a random edge to flip and thoe ρ2 comes
from the fact that we may increase the number of odd vertices by 2 – but we don’t pick up a factor
of λ since A ∪B is bigger). This proves our first claim.

So, it remains to show that

µ(I)µ(F ) ≤ ρ−4 · µ(T ) · µ(I ⊕ F ⊕ T ),

where T = A ∪ B. Here the “dual paths” have intermediate verticese T and its dual I ⊕ F ⊕ T .
Equivalently (by cancellations of the partition function and cancellation of λ factors ) we want to
show that

ρ|odd(F )|ρ|odd(I)| ≤ ρ−4ρ|odd(T )|ρ|odd(I⊕F⊕T )|.

Since 0 ≤ ρ ≤ 1, the above is equivalent to

|odd(T )|+ |odd(I ⊕ F ⊕ T )| ≤ 4 + |odd(I)|+ |odd(F )|.

To prove the above, the key insight is that each time we flip an edge, we change the numer of odd
degree vertices by at most 2. Moreover, if we flip adjacent edges, then the number of odd degree
vertices also changes by at most 2 (since the intermediate vertex has degree changing by 2). But
what about disjoint paths? To deal with that, we first make the following claim:

Claim 5.3. If we have finished a path/cycle to get to T , then

|odd(T )|+ |odd(I ⊕ F ⊕ T )| = |odd(I)|+ |odd(F )|.

Proof. If T is a cycle the equality is immediate. So suppose T is gotten from I by following a path
from u to v. By construction we know that u and v must both be odd-degree vertices in I ⊕ F :
so, u is in exactly one of odd(F ), odd(I), and same for v. Suppose that u ∈ odd(I), u 6∈ odd(F ) and
v ∈ odd(F ), v 6∈ odd(I) (we treat the general case below). Suppose for simplicity that this path is
the first in the sequence: in particular, that T is gotten by traversing this path starting from I,
and that I ⊕ F ⊕ T is gotten by tranversing a path starting from F .

To compute odd(T ): we have removed u ∈ odd(I) from odd(I), and added v to odd(T ). So,
after this path, we have that odd(T ) = odd(I)−u+ v. Similarly, odd(I ⊕F ⊕T ) = odd(F ) +u− v.

(If we add u to get to T , we must remove u to get to I ⊕ F ⊕ T , and vice versa.)
Another way of seeing it is as follows: in general, we have odd(A ⊕ B) = odd(A) ⊕ odd(B).

If the path that we have traversed is denoted by P (so that T = I ⊕ P ), then it follows that
odd(I⊕F⊕T ) = odd(F )⊕odd(P ) and odd(T ) = odd(I)⊕odd(P ). Now clearly |odd(I)|+|odd(F )| =
|odd(F )⊕odd(P )|+ |odd(I)⊕odd(P )|, since the only odd-degree vertices of P are its endpoints.

Given the above claim, we then show that if we’re in the middle of a path or a cycle, then
the sum of odd degree vertices of the two sets can’t change by more than 4. In particular, T is
in the middle of a path or cycle: we want to compare odd(T ) to what we would have if we have
finished traversing the rest of the path or cycle. In particular, suppose this path/cycle is defined
by e1, . . . , ek, with T corresponding to e1, . . . , e`. Let Tinit be what we get starting from T and
untraversing e1, . . . , e`, and Tfinal be what we get starting from T and traversing e`+1, . . . , ek. The
second claim is:

Claim 5.4. |odd(T )| − |odd(Tinit)|+|odd(Tfinal)|
2 ≤ 2.

17



Proof. Each time we traverse two consecutive edges along a traversal, the shared vertex has the
parity of its degree remain the same. So, |odd(T )| is within 2 of both |odd(Tinit)| and |odd(Tfinal)|.

Given the above claim, we apply it to both T as well as the analogous case I ⊕ F ⊕ T .

6 September 26, 2023

Last time, we showed how to sample from the ferromagnetic Ising model. When does Glauber
dynamics mix? For most classes of graphs, there exists βc so that for β < βc, Glauber dynamics
mixes in O(n log n) steps and for β > βc, Glauber needs exp(n) steps (rougly).

How do we understand this phase transition? Use something called correlation decay [Weitz
’06], [Bandyopadhyay-Gamarnik]. But first we introduce some useful definitions/concepts.

Definition 6.1 (Spin system). Given q ∈ N, a q-spin system consists of:

• An interaction matrix A ∈ Rq×q≥0 .

• External fields λ ∈ Rq≥0.

• A graph G = (V,E).

The Gibbs distribution is defined as follows: for σ : V → [q],

µ(σ) ∝
∏
uv∈E

Aσ(u),σ(v)

∏
v∈V

λσ(v) (1)

Some examples:

• If A =

(
e2β 1
1 e2β

)
, we recover the ferromagnetic Ising model.

• If A =

(
0 1
1 1

)
, we recover sampling from independent sets.

• If A is the all-1s matrix with 0s on the diagonal, we recover sampling from proper q-colorings.

We define a pinning to be a map τ : S → [q], for some S ⊂ V . This induces a conditional
distribution

µτ (σ) ∝

{
µ(σ) : σ|S = τ

0 : otherwise.

Lemma 6.1 (Global Markov property). For all partitions AtStB so that all paths A 3 u v ∈ B
must go through S and all pinnings τ : S → [q], then µτ = µτA⊗µτB, where µτA denotes the marginal
on A (and similarly for µτB).

We don’t give a formal proof but note that it is intuitively clear (all correlation between A,B
is separated by S).
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Correlation decay.

Definition 6.2 (Weak spatial mixing). For all r ∈ V and S ⊂ V − {r} (think of S as a “sphere”
around r), we have weak spatial mixing if for all τ, σ : S → [q] we have

‖µτr − µσr ‖TV ≤ C · (1− δ)
dist(r,S),

where 0 < δ < 1 is a constant and C > 0 is a constant.

Intuitively, if r is far from S, then the spins of vertices of S shouldn’t influence the distribution
of the spin at r.

Definition 6.3 (Strong spatial mixing). We have strong spatial mixing if, in the context of the
above definition,

‖µτr − µσr ‖TV ≤ C · (1− δ)
dist(r,Sτ,σ),

where Sτ,σ = {v ∈ S : τ(v) 6= σ(v)}.

You can think of strong spatial mixing as asking for weak spatial mixing on all possible condi-
tional distributions, where you condition on only the nodes where τ, σ disagree.

What is a phase transition? For this lecture, think of it as follows: there exists a threshold for
some parameter, λc, so that for λ > λc WSM/SSM fails but for λ < λc, WSM/SSM holds.

6.1 Hardcore model

This is the special case of a spin system regarding sampling from independent sets. To spell it
out, given G = (V,E) and λ ≥ 0, we have µ(I) ∝ λ|I|, for I ⊂ V an independent set. This is a
discretization of a famous statistical physics model called the hard gas model. Mathematically, the
hardcore model is universal in some sense. Also, if you pin a vertex, it corresponds to deleting that
vertex and its entire neighborhood (so convenient).

We denote the partition function by ZG(λ) =
∑

I⊂V λ
|I| (called the independence polynomial

of the graph). We let ∆ denote the max-degree of G. If λ is large, this distribution concentrates on
maximum independent sets, which are hard to find. If λ is small, concentrates on small independent
sets (should be easy). We define:

Definition 6.4. We define the critical threshold λc(∆) = (∆−1)∆−1

(∆−2)∆ ≈ e/(∆− 1).

Theorem 6.2 (Weitz ’06). there exists an FPTAS for computing ZG(λ) for all λ < λc(∆) on all
graphs of max-degree ∆. SSM holds on all such graphs.

We also have a converse:

Theorem 6.3 (Sly ’10). For all λ > λc(∆), if there exists an FPRAS for ZG(λ) on all max-degree
∆ graphs G, then NP = RP.

We also remark that it was previously well-known that WSM (and thus SSM) fails for λ > λc(∆).
The focus of the next two lectures is on the Weitz proof. As way of intuition, we remark that

the worst-case graph G for the Weitz theorem is the infinite ∆-regular tree.
We remark that it is an open problem to design an efficient algorithm for λ = λc(∆). We know

that correlations still decay here, but not exponentially fast.
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6.2 Correlation decay on trees

We begin by proving correlation decay on trees.

Proposition 6.4. If λ < λc(∆), then for all max-degree ∆ trees T rooted at r, SSM holds for r.

If we have a tree rooted at r, then given a vertex u, the subtree rooted at u, Tu, consists of all
nodes further away from r than u.

Definition 6.5. Define Pu = PrI∼µ
Tu,λ

[u ∈ I].

Lemma 6.5 (Tree recursion). If u1, . . . , ud are neighbors of r, then

Pr = Fd(p1, . . . , pd) :=
λ
∏d
i=1(1− pi)

1 + λ
∏d
i=1(1− pi)

.

Here we write pi = pui.

This lemma gives us a way to compute the marginals for each vertex in a tree: first compute
the marginals for the leaves (which are just pu = λ/(1 + λ)), and then we work upwards using tree
recursion. Then, we can use the marginals to compute the partition function. We now prove the
tree recursion lemma:

Proof. We write ZT (λ) = ZT−r(λ) +λ ·ZT−N(r)(λ). Moreover, ZT−r(λ) =
∏e
i=1 ZTui (λ). Similarly,

ZT−N(r)(λ) decomposes. We don’t write out the full details.

We can now write, using the tree recursion lemma,

‖µτr − µσr ‖TV = |pτr − pσr | = |Fd(pτu1
, . . . , pτud)− Fd(p

σ
u1
, . . . , pσud)|,

where τ, σ are restricted to the appropriate subtrees. We want to show htat Fd is a contraction, to
bound the above by (1− δ) ·maxi |pτui − p

σ
ui |. We then repeatedly apply this until we get to some

level where there is a vertex in Sτ,σ.

The extremal case is as follows: the tree T̂∆,L which is a depth-L, Λ − 1-ary tree there τ is
identically 0 on layer L and σ is identiclaly 1 on layer L. We can then specialize the tree recursion
formula, which gives (by symmetry)

fd(p) =
λ(1− p)d

1 + λ(1− p)d
.

The corresponding special case of what we want to show is (by monotonicty of fd)

|f◦Ld (0)− f◦Ld (1)| ≤ C · (1− δ)L.

If this is the case, then for all p ∈ [0, 1], we must have {f◦Ld (p)}∞L=0 → p̂, for some fixed p̂ as
L → ∞. Moreover, p̂ must be a fixed point of fd. (Note that p̂ depends on λ, p.) So, it all comes
down to whether a univariate function has a unique fixed point (which it does, since it’s monotone
decreasing) and whether it converges to this fixed point (which it may not, if λ is too large).
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Proposition 6.6. If λ ≤ λc(∆) then for all p, {f◦Ld (p)}L → p̂. Furthermore, if λ ≤ (1− δ)λc(∆),
then |f ′d(p̂)| ≤ 1−O(δ) and |f◦Ld (p)− p̂| ≤ C · (1−O(δ))L.

If λ > λc(d), then there exist p̂odd < p̂ < p̂even so that f◦2Ld (p)→


p̂odd : p < p̂

p̂even : p > p̂

p̂ : p = p̂

.

We remark that p̂odd, p̂even are fixed points of f◦2d . So, as L gets large, we actually don’t approach
p̂ in the λ large regime.

We don’t prove the above proposition (it’s just direct calculation).

6.3 The multivariate case

To solve the multivariate case, we will reduce to the single-variate case. We let ϕ : [0, 1]→ R≥0 be
an increasing “potential function”. We measure |ϕ(pτr )− ϕ(pσr )|. In particular, we have a new tree
recursion, defined by:

Gd(m1, . . . ,md) = ϕ(Fd(ϕ
−1(m1), . . . , ϕ−1(md))),

where mi = ϕ(pi). We claim that

‖∇Gd(m)‖1 ≤ 1−O(δ),

which will imply that we get the contraction we want (essentially by mean value theorem).

Lemma 6.7. Suppose λ ≤ (1 − δ)λc(∆). Let ϕ(p) be so that Φ(p) = ϕ′(p) = 1√
p·(1−p) . Then

‖∇Gd(m)‖1 ≤ 1−O(δ) for all m and for all 1 ≤ d ≤ ∆− 1.

Proof. We have

|∂miGd| =
∣∣∣∣Φ(Fd(p))

Φ(pi)
· ∂pi(Fd(p))

∣∣∣∣ =
√
Fd(p) ·

√
pi

by the Chain rule. Why is this a good thing? If pi is large, then by the repulsive nature of the
hardcore model it will force Fd(p) to be smaller. The two terms above, Fd(p) and pi essentially
control each other, and thus their produce is small. Hence the partial derivative will be small.

We complete the proof next time.

7 September 28, 2023

Remember the setting: we study the hardcore model, µ(I) = µG,λ(I) ∝ λ|I| for independent sets

I. We have the tree recursion formula, which gives that pr = Fd(p1, . . . , pd) =
λ
∏d
i=1(1−pi)

1+λ
∏d
i=1(1−pi)

.

Moreover, we write fd(p) = Fd(p · 1) and gd(p) = Gd(p · 1) = ϕ ◦ fd ◦ ϕ−1.
Today the goal is to prove Weitz Theorem In particular, we want to show that if λ ≤ (1 −

δ) · λc(∆), then SSM holds on all graphs of max-deg ∆. Furthermore, there exists an FPTAS for
computing ZG(λ).

The subgoal is to establish contraction for the single-variable case, which we did last time. Now
we extend this to the multivariate case:
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Lemma 7.1. For all m ∈ Rd≥0, there exists m̄ so that ‖∇Gd(m)‖1 ≤ |g′d(m̄)|.

Proof. Writing p = ϕ−1(m) (i.e., so that ϕ is applied coordinate-wise), we have

∂iGd(m) =
Φ(Fd(p))

Φ(pi)
· ∂iFd(p) = −

√
Fd(p) ·

√
pi,

where we use thatt ∂iFd(p) = 1−Fd(p)
1−pi ·Fd(p) by definition of Fd. Recall that Φ = ϕ′ = 1√

p(1−p) , and

Gd = ϕ ◦ Fd ◦ ϕ−1.
It follows that

‖∇Gd(m)‖21 = Fd(p)

(
d∑
i=1

√
pi

)2

≤ d · Fd(p)
d∑
i=1

pi,

where the inequality uses Cauchy-Schwarz. Using the definition of Fd, the above is equal to

d2 ·
λ
∏d
i=1(1− pi)

1 + λ
∏
i(1− pi)

·

(
1− 1

d

d∑
i=1

(1− pi)

)
≤ d2 λ

∏
i(1− pi)

1 + λ
∏
i(1− pi)

·

(
1−

d∏
i=1

(1− pi)1/d

)
,

where we use AM-GM. Now we set p̄ = 1 −
∏d
i=1(1 − pi)

1/d and m̄ = ϕ(p̄). Since g′d(m) =
d · ∂1Gd(p · 1) = −d

√
fd(p) ·

√
p (where again p = ϕ−1(m)), the above is equal to

d2 · λ(1− p̄)d

1 + λ(1− p̄)d
· p̄ = (g′d(m))2,

as desired.

Lemma 7.2. For all m ∈ R≥0, |g′d(m)| ≤
√
|f ′d(p̂)|, where p̂ is defined to satisfy p̂ = fd(p̂).

The main point is that
√
|f ′d(p̂)| is less than 1 − O(δ) if λ ≤ (1 − δ)λc(∆) (see the notes for a

proof of this UB on fixed point). We skip the proof of the above lemma. Summarizing, we have
shown that ‖∇Gd(m)‖1 ≤ 1−O(δ) for all m ∈ Rd≥0, which completes the proof of Lemma 6.7 from
last time.

7.1 Reduction from general graphs to trees

Tree recursion no longer works since if we remove a vertex, we no longer break the graph into
disjoint subgraphs. We begin with an approach to compute marginal probabilities inefficiently.

Theorem 7.3. Lete G be a graph, r ∈ V , with neighbors u1, . . . , ud. For k ∈ [d], let Gk be octained
from G by deleting r, u1, . . . , uk−1. Write pGr := PrI∼µG,λ [r ∈ I]. Then

pG,r = Fd(pG1,u1 , . . . , pGd,ud).

Note that the above gives an inefficient but exact way of computing marginal probabilities: we
recursively call the algorithm to query each of pGk,uk , using that Gk is smaller than G for each
k. The recursion must always terminate. We can actually imagine an exponentially large tree
corresponding to the recursive execution of this algorithm: the root is (G, r), and internal nodes
are nodes of the form (H,u) where H is a subgraph of G and u ∈ H, and the leaves are graphs
with isolated vertices (together with a chosen vertex from that set of isolated vertices). This is
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sometimes called a computation tree or self-avoiding walk tree: its root-to-leaf paths correspond to
paths in G which never backtrack along already-visited nodes. We denote this tree by TSAW (G, r).

We notes the following properties: the max-degree of TSAW is bounded above by the max-degree
of G. Second, it preserves the shortest path distance to the root r.

Moreover, suppose that Λ ⊂ V − {r} and τ : Λ → {in, out} is a pinning. We can lift τ to a
pinning τSAW : ΛSAW → {in, out}, where ΛSAW = {(H,u) : u ∈ Λ}.

It turns out that if we have correlation decay in TSAW , then we get correlation decay in the
original graph G: correlation decay is only harder to achieve in G.

Now we prove the reduction lemma:

Proof. We have

pG,r =
Zg(r ← ”in”)

ZG(r ← ”in”) + ZG(r ← ”out”)
,

where ZG(r ← ”in”) denotes the measure of all independent sets including r, and similarly for
ZG(r ← ”out”). Given the graph G with root r and neighbors u1, . . . , ud, we create a new graph
G̃ with d copies of r, denoted r1, . . . , rd. Each ri has a single neighbor which is ui. Moreover, we
downweight the λ’s for each ri to λ1/d (to make sure weighting works out).

Then we now have:

pG,r =
Z
G̃

(r1, . . . , rd ← ”in”)

Z
G̃

(r1, . . . , rd ← ”in”) + Z
G̃

(r1, . . . , rd ← ”out”)
.

Now we can peel out each vertex, one at a time. We will shoot for a recursion of the form

Z
G̃

(r1, . . . , rd ← ”in”) ≈
d∏

k=1

Z
G̃

(r1, . . . , rk ← ”in”)

Z
G̃

(r1, . . . , rk−1 ← ”in”)

To formally do this, we let G̃k denote the graph G with edges between ri, ui removed for i ≥ k+1.
Then by telescoping we have

Z
G̃0

(r1, . . . , rd ← ”in”) = Z̃G0 ·
d∏

k=1

Z
G̃k

(r1, . . . , rk ← ”in”)

Z
G̃k−1

(r1, . . . , rk−1 ← ”in”)

Note that in the hardcore model, we have Z
G̃

(r1, . . . , rd ← ”out”) = Z̃G0 .
We now have

Z
G̃

(r1, . . . , rk−1 ← ”in”, rk ← ”in”) = λ1/2 · Z
G̃k−1

(r1, . . . , rk−1 ← ”in”, uk ← ”out”).

Now, each ratio in the product above then is equal to λ1/d · (1−Pr
G̃k

(uk ← ”in”)), where Gk is G̃
but with r, r1, . . . , rk−1, u1, . . . , uk−1 deleted.

By definition of Fd, this gives the desired form of pG,r.

One can try generalize the above to multiple spins: naively, you blow up the number of instances
(i.e., degree) by a factor of q, since you have to look at the probability that the root is labeled by
each element of [q]. One open problem is to find a generalization of the above argument where you
don’t blow up the degree like this.
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7.2 Proof of strong spatial mixing

Proof. We are given two pinnings τ, σ : Λ → {in, out}, where Λ ⊂ V − {r}. We want to upper
bound ‖µτr − µσr ‖TV = |pτG,r − pσG,r|.

The above is upper bounded by

|ϕ(pτG,r)− ϕ(pσG,r)| = |Gd(ϕ(pτG1,u1
), . . . , ϕ(pτGd,ud))−Gd(ϕ(pσG1,u1

), . . . , ϕ(pσGd,ud))|

We previously showed that the above is upper bounded by

(1−O(δ)) · max
1≤i≤d

|ϕ(pτGi,ui)− ϕ(pσGi,ui)|.

(Here we have used also that |Gd(m) − Gd(m′)| ≤ supm̄ ‖∇Gd(m̄)‖1 · ‖m −m′‖∞, as well as our
upper bound on supm̄ ‖∇Gd(m̄)‖1 ≤ 1−O(δ).)

By induction, we get that it is upper bounded by (1 − O(δ))dist(r,Λτ,σ). In the course of this
recursion, we might come across vertices in Λ − Λτ,σ: but any such vertex (H,u) (i.e., with H a
subgraph of G and u ∈ Λ − Λτ,σ) must satisfy pτH,u = pσH,u, and hence ϕ(pτH,u) = ϕ(pσH,u) since
such vertices u must satisfy τ(u) = σ(u). In particular, the recursion can stop at such vertices.
Moreover, to bound |pτG,r − pσG,r| ≤ C · |ϕ(pτG,r) − ϕ(pσG,r)|, we need infq∈[0,1] |ϕ′(q)| ≥ c > 0, since

ϕ′(q) = 1√
q·(1−q) (e.g., we may take c = 1/10). Finally, at the last step of recursion, we need a

bound on maxp,q∈[0,1] |ϕ(p)− ϕ(q)|, which is similarly upper bounded by an absolute constant.
Now here is the algorithm to estimate ZG(λ):

1. First, note that: to estimate ZG(λ) to (1 ± ε) multiplicative error, it suffices to estimate
marginals to ±O(ε/n) additive error. This is by a similar telescoping reduction to in the first

lecture. Namely, for any specified vertex r, we have |ZG| =
|ZG−{r}|
|ZG| · |ZG−{r}|. Then the ratio

|ZG−{r}|
|ZG| is the probability that r is not in an independent set (which is its marginal), and the

second term |ZG−{r}| can be estimated by recursion.

2. To estimate pG,r we run a recursion to depth L = O(1/δ · log(n/ε)).

3. If we hit an instances (H,u) at this depth, then we return an arbitrary estimate p̃H,u.

That this works follows immediately from strong spatial mixing (we get contraction at a rate of
(1−O(δ)), and the choice of L ensures we get additive approximation to ±ε/n).

The running time is ∆log(n/ε)/δ = (n/ε)log(∆)/δ, since we branch by a factor of ∆ at each step.

Note that this contrasts to belief propagation (run in practice by physicists), which has no
guarantee of correctness in general.

7.3 Finishing contraction

Finally, we prove Lemma 7.2.

Proof of Lemma 7.2. Remembr that fd(p) = λ(1−p)d
1+λ(1−p)d . We have gd = ϕ ◦ fd ◦ ϕ−1. We want to

show that for all m = ϕ(p), |g′d(m)| ≤
√
f ′d(p̂), where p̂ = fd(p̂) is the fixed point of f .

We have that |g′d(m)| = d
√
fd(p) ·

√
p, where p is defined by m = ϕ(p).

Moreover, by direct computation we have f ′d(p̂) = −d · 1−fd(p̂)
1−p̂ · fd(p̂) = −d · p̂, using that p̂ is a

fixed point of fd. So, what we want to prove is equivalent to: for all p ∈ [0, 1], d ·fd(p) ·p ≤ p̂. Then
we can complete the lemma by doing a bit more analysis of the fixed point here; see notes.
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8 October 3, 2023

Recall that the permanent of a matrix is defined by per(A) =
∑

σ∈Sn
∏
i∈[n]Ai,σ(i), for a complex-

valued matrix A. Our main goal is to prove the following theorem:

Theorem 8.1 (Barvinok). Assume that ‖A−11>‖∞ ≤ η for η < 1/2.1 Then there is a polynomial
Tm of degree m ≤ Oη(log(n/ε)) so that |Tm(A)− log per(A)| ≤ ε. Furthermore, Tm can be computed
in 2poly logn time (i.e., quasipolynomial time).

Note that the dependence of degree on η ends up being O(1/(1− η)).

8.1 Taylor series approach

In general, we expect that for a degree-m Taylor series, we have error ≤ Cη,m if the function is
relatively smooth (i.e., its derivatives are not too large).

Proposition 8.2. Suppose g : C→ C is a univariate polynomial of degree d. Assume that g(z) 6= 0
forall z ∈ C so that |z| ≤ R for some R > 1. Write f = log g and define

Tm(z) =
m∑
k=0

f (k)(0)

k!
· zk,

where f (k) is the kth derivative of f . Then for all z ∈ D (where D denotes the unit disc in C),

|f(z)− Tm(z)| ≤ d

(m+ 1)Rm(R− 1)
.

Note that ultimately we will take g(z) = per(zA+ (1− z) ·11>). Note also that the derivatives
of g can be readily computed, so that the derivatives of log g can also be computed.

We now prove the above proposition:

Proof. Let ζ1, . . . , ζd be the roots of g. By assumption |ζi| > R for all i. We can write

g(z) = g(0) ·
d∏
i=1

(1− z

ζi
).

Taking log, we get

f(z) = f(0) +

d∑
i=1

log(1− z/ζi).

Since log(1− z) is holomorphic inside the unit disc, the Taylor series for log(1− z) converges inside
D. In particular,∣∣∣∣∣log(1− z/ζi)−

(
m∑

k=1

1

k
· (z/ζi)k

)∣∣∣∣∣ ≤
∣∣∣∣∣
∞∑

k=m+1

1

k
· (z/ζi)k

∣∣∣∣∣ ≤ 1

m+ 1

∞∑
k=m+1

|z|k

|ζi|k
≤ 1

m+ 1

∞∑
k=m+1

R−k =
1

(m+ 1)Rm(R− 1)
.

We have used that |z| ≤ 1 and |ζi| ≥ R. If we sum over these approximations for all i, then for any
fixed m, the error is at most d times the quantity above, yielding the proof of the proposition.

1This is `∞ norm as a vector
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Lemma 8.3. Given {g(k)(0)}mk=0, we can compute {f (k)(0)}mk=0 in time O(m2).

Proof. We have f = log g, so f (1) = g(1)/g(0), i.e., g(1) = g(0) · f (1). Now we can differentiate this
identity k times, and we get

g(k) =
k−1∑
j=0

(
k − 1

j

)
f (k−j)g(j).

In particular, given the derivatives of g and f (0), . . . , f (k−1), the above gives a formula for f (k) which
can be computed in time O(k). Then just use induction on k, which leads to O(m2) computation
claim.

To prove correctness of our algorithm, we need to control the roots of the polynomial that we’re
analyzing. In particular, Barvinok’s theorem is:

Theorem 8.4 (Barvinok). There exists η0 > 1/2 so that ‖A−11>‖∞ ≤ η0 implies that per(A) 6= 0.

First, we prove Theorem 8.1.

Proof of Theorem 8.1. We take η0 = 1/2. Let g(z) = per(11> + z(A − 11>)). By Theorem 8.4,
g(z/2) 6= 0 for all z so that |z| ≤ 1/η0 = 2. We need to compute {g(k)(0)}mk=0.2 Let’s write down
what this derivative is:

dk

dzk

∑
σ∈Sn

n∏
i=1

(1 + z(Ai,σ(i) − 1)).

The inner product is ∑
S⊂[n]

∏
i∈S

(Ai,σ(i) − 1) · z|S|.

To compute the derivative at 0, we kill off all subsets |S| < k, and also those with |S| > k (since
there will be a term z|S|−k). Thus,

g(k)(0) = k!
∑
σ

∑
|S|=k

∏
i∈S

(Ai,σ(i) − 1).

We claim that the above can be computed in nO(k) time. Let’s reorder the summation: we claim
that it is equal to

g(k)(0) = k!(n− k)!
∑
|S|=k

∑
σ:S→[n] injective

∏
i∈S

(Ai,σ(i) − 1).

In particular, we have used that for all (n − k)! ways to extend σ outside of its values on S, the
value of the product will remain the same. So we get a blowup of a factor (n − k)!. The above
summation is now over nO(k) terms, so we can just brute-force compute it exactly.

Then by the previous lemma, we may compute the polynomial Tm(z) in time nO(k), and by the
first proposition, with R = 2, get get ε-approximation with degree log(n/ε), as desired.

2Technically we want the derivatives of the mapping z → g(z/2), but it suffices to show we can compute the
derivatives of g by the chain rule.
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8.2 Proof of Barvinok’s zero-free theorem

We prove Theorem 8.4 for the rest of lecture. Note that permanent is a multilinear polynomial. If
we let Aj denote the submatrix where we delete the 1st row and jth column, then we can write

per(A) =

n∑
j=1

A1,j · per(Aj).

Note that Aj submatrices are also close to the all-1s matrix. We want to say that all permanents in
the above sum are nonzero complex numbers, and since A1,j are close to 1, when we sum them up
we get something that is nonzero. The problem is that each of per(Aj) can be pointing in different
directions and they all cancel each other out. Thus, we will actually show that the complex numbers
per(Aj) all point in a similar direction.

In particular, the inductive hypothesis is the following statement IH(n):

1. For all A ∈ Cn×n so that ‖A− 11>‖∞ ≤ 1/2, per(A) 6= 0.

2. For all pairs A,B ∈ Cn×n which are 1/2-close to the all-1s matrix and A,B differ on at most
one row/column, then ∠(per(A),per(B)) ≤ α. (We will ultimately take α = π/2.)

The following is the main geometric lemma:

Lemma 8.5. Suppose α ≤ 2π/3. Let u1, . . . , un ∈ C be nonzero and such that for all i, j,
∠(ui, uj) ≤ α. Let a1, . . . , an ∈ C satisfy ‖a− 1‖∞ ≤ 1/2. Then

1.
∑n

i=1 aiui 6= 0.

2. ∠ (
∑n

i=1 aiui,
∑n

i=1 ui) ≤ sin−1
(

1/2
cos(α/2)

)
. This expression is π/4 if we plug in α = π/2.

Think of a1, . . . , an as being the entries of the first row of A.
We first show how to use Lemma 8.5 to finish the proof of the zero-free theorem.

Proof of Theorem 8.4. We leave IH(1) as an exercise. Now assume IH(n − 1) holds. We write
per(A) =

∑n
i=1A1,jper(Aj). We will apply Lemma 8.5 with {aj} = {A1,j}. Note that the matrices

Aj differ, pairwise, by at most one column. Thus, by IH(n − 1), we have that, with {uj} =
{per(Aj)}, ∠(ui, uj) = ∠(per(Ai),per(Aj)) ≤ π/2. The first item of the geometric lemma implies
that per(A) =

∑n
i=1 aiui 6= 0, establishing the first part of IH(n).

Next we need to prove the second part of IH(n). So consider A,B which differ in a single row
or column (say wlog they differ in the first row). The main point is to use the triangle inequality
(note that the angle between complex vectors satisfies the triangle inequality). Then

∠(per(A),per(B))

=∠

∑
j

A1,jper(Aj),

n∑
j=1

B1,jper(Bj)


≤∠

 n∑
j=1

A1,jper(Aj),
n∑
j=1

per(Aj)

+ ∠

 n∑
j=1

per(Aj),

n∑
j=1

per(Bj)

+ ∠

 n∑
j=1

per(Bj),
n∑
j=1

B1,jper(Bj)

 .
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The second term in the final expression is 0 since Aj = Bj for all j. The first and third terms are
at most π/4 by the second statement of the geometric lemma with α = π/2, applied to each of the
sequences {uj} = {per(Aj)} and {uj} = {per(Bj)}. This completes the induction.

Proof of Lemma 8.5. Write u =
∑n

i=1 ui, v =
∑n

i=1 aiui.
First, we claim that |u| ≥ cos(α/2)

∑n
i=1 |ui|. (This is a sort of reverse triangle inequality.) The

idea behind the proof of this claim is that there is some cone with internal angle α so that all ui are
in this cone. Then we project all ui onto the bisector of this cone. This argument crucially relies
on the fact that α ≤ 2π/3, as otherwise can take 1, e2πi/3, e4πi/3, which do not all lie in a convex
cone of size 2π/3.

Given the above claim, |u − v| = |
∑n

i=1(ai − 1) · ui| ≤ ‖a − 1‖∞ ·
∑n

i=1 |ui| ≤ 1/2
∑n

i=1 |ui| <
cos(α/2)

∑
i |ui| ≤ |u|, where we have taken α = π/2. Thus, |v| ≥ −|u − v| + u| > 0, and hence

v 6= 0, proving the first claim.
To prove the second claim, consider the vectors u, v, u − v. We know that |u − v| < |u|. We

want to bound ∠(u, v), which we denote by θ. Note that sin θ ≤ |u−v|
|u| ≤

1/2
cosπ/4 (can see the first

inequality by drawing a picture, and the second inequality since |u−v| ≤ 1/2
∑

i |ui| ≤
1/2

cos(π/4) · |u|).

Thus, taking sin−1, we get θ ≤ sin−1
(

1/2
cos(π/4)

)
.

9 October 5, 2023

Given a graph G = (V,E), a matching is a subset M ⊂ E so that no vertex is incident to more
than one edge of the graph (not necessarily a perfect matching). Today we discuss:

Theorem 9.1 (Heilman-Lieb,Patel-Rogts). There is a deterministic algorithm to count all match-
ings up to (1 ± ε)-multiplicative error in time nC , where C = C(∆) is a function of the max
degree.

We use similar analytic techniques to last time. In particular, define the following matching
polynomial:

MG(λ) =
∑

M⊂E, matching

λ|M | =

bn/2c∑
k=0

mkλ
k,

where mk is the number of k-matchings.

Theorem 9.2 (HL). MG has negative real roots, and if G has max-degree ∆, then each root r
satisfies r ≤ − 1

4(∆−1) .

In particular, the region to the right of the line <(z) = −1/(4(∆− 1)) is zero-free. We can use
the technique of last time to estimate the matching polynomial in this region in quasipolynomial
time, but today we will in fact get a poly-time algorithm.

Our strategy is similar to the lecture on correlation decay: we will reduce to the tree case.
Recall that for r ∈ G, we defined T = TSAW (G, r):

• The vertices of T correspond to self-avoiding walks r = u0 → · · · → uk.

• Twowalks are adjacent if one extends the other.
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Theorem 9.3 (Godsil-Gutman). MG divides MT , where T = TSAW (G, r), for any choice of the
root vertex r.

In particular, it suffices to get control on the roots of MT , since the roots of MG are a subset.

Proof of Theorem 9.3. We will prove the following more precise statement:

MG−r(λ)

MG(λ)
=
MT−r(λ)

MT (λ)
. (2)

By rearranging, this shows that MG divides MT . In particular, we get that

MT =MG ·
MT−r
MG−r

.

By induction, we have that MG−r | MT−r (in particular, note the TSAW of G − r with root r is
equal to MT−r since the walks have to be self-avoiding).

To prove (2), the intuition is thatMG−r/MG is the probability over a random matching (where
matching M is given weight λ|M |) that r is not included, i.e., PrM (r not included). The proof will
be similar to in the lecture on correlation decay (use a tree recursion).3 In particular, we have that

MG(λ) =MG−r(λ) + λ
∑
v∼r
MG−r−v(λ). (3)

Rearranging, we get

MG(λ)

MG−r(λ)
= 1 + λ

∑
v∼r

MG−r−v(λ)

MG−r(λ)
= 1 + λ

∑
v∼R

MTSAW (G−r,v)−v(λ)

MTSAW (G−r,v)(λ)
,

where the second equality uses induction with v being the root node. Now the key claim is that
the subtree of TSAW (G, r) rooted at the node corresponding to v is exactly TSAW (G− r, v). Thus,
the above expression is equal to

1 + λ
∑
v∼r

MTSAW (G,r)−r−v(λ)

MTSAW (G,r)−r(λ)
=
MT (λ)

MT−r(λ)
, (4)

Note that we have used the fact that since we removed r, the subtrees given by its children are all
disjoint, so the matching polynomial is a product, and thus for all subtrees which don’t contain v,
we get cancellations on the LHS of (4). Note that to show the equality in (4) we used (3).

This completes the inductive step.

So, it suffices to prove the HL result for trees. We define

M̃G(z) =

bn/2c∑
k=0

(−1)kmkz
n−2k = znMG(−1/z2).

Lemma 9.4. If G is a tree, then M̃G(z) = det(zI −AG).

3We can’t use exactly the same recursion from a few lectures ago (tree recursion for independent sets) since that
loses the special structure of matchings.
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This will givve what we want: since AG is symmetric, its eigenvalues are real and moreover can
be bounded by trace moment method.

Proof. We have

det(zI −A) =
∑

σ:V→V
(−1)sign(σ)

∏
v∈V

(zI −A)v,σ(v).

Now let’s pick out vertices v so that σ maps them to itself. That gives us powers of z. In particular,
the above is equal to

n∑
k=0

zn−k(−1)k
∑
S∈(Vk)

det(AS,S),

where AS,S denotes the S×S submatrix corresponding to S ⊂ V . We claim that (−1)k/2 det(AS×S)
corresponds to the number of perfect matchings in the induced subgraph G[S]. This will imply
that

∑
S∈(Vk)

det(AS×S) = (−1)k/2mk.

Since G[S] is a tree, it suffices to prove WLOG that det(A) = (−1)n/2mn. So write det(A) =∑
σ:V→V (−1)sign(σ)

∏
v Av,σ(v). We want to show that only permutations corresponding to match-

ings have a nonzero contribution to this sum, i.e., only if (v, σ(v)) ∈ E for all v ∈ V .
We also know that all permutations σ have a cycle decomposition. We want that each of the

successive pair of edges in such a cycle corresponds to an edge of G. But G is a tree and so has
no cycles, and so we have a nonzero contribution if and only if the cycle decomposition of σ is a
decomposition into pairs of vertices which correspond to edges of G. In particular, we must have
σ(σ(v)) = v for all v. Such a decomposition clearly corresponds to a matching.

The above lemma implies that M̃G has real roots. Then clearly by definition, so does MG. So
we just need to prove a bound on the roots. We use the following:

Lemma 9.5. If T is a tree of max-degree ∆, then all eigenvalues of AT are ≤ 2
√

∆− 1.

Proof. We look at limk→∞Tr(AkT )1/k = λmax(At). Now, AkT (u, u) is the number of walks in the
tree that start at u and return to u. Roughly speaking, the number of walks of length k scales as
∆k/2, since after walking downwards for k/2 steps we need to come back up. We also use the fact
that trees are bipartite, so all eigenvalues are symmetric about 0, and thus we get a bound on λmin

as well.

By the above lemma, all roots of M̃G(z) are at most 2
√

∆− 1. Thus using the definition of M̃G

in terms of MG, we get that all roots of MG are bounded above by (2
√

∆− 1)−2 = 1/(4(∆− 1)).

9.1 Using the Heilman-Lieb theorem

Recall from last time that, for f(λ) = logMG(λ), to estimate f in a zero-free region containing
0 we need to compute {f (k)(0)}mk=0 for m sufficiently large. Last time, we showed that we can do

this if we know the low-order Taylor coefficients ofMG, i.e., {M(k)
G }mk=0 = {mk}mk=0. Last time, we

brute-forced this, which took nO(m) time – this gave quasipolynomial time, by taking m = O(log n).
Today, we do this more intelligently, using a combinatorial interpretation of f (k)(0).

30



Let r1, . . . , rn/2 denote the roots of MG. Then we can write MG(z) =
∏n/2
i=1(1 − z/ri). There

is no coefficient in front since MG(0) = 1. As we saw last time,

f (k)(0)/k! =
1

k

bn/2c∑
i=1

r−ki . (5)

You get this by taking log of both sides and looking at the Taylor series of log(1− z/ri).

Lemma 9.6. Let T (r) = TSAW (G, r) for each r. Then for all k,

bn/2c∑
i=1

|ri|−k =
∑
r∈V

(A2k
T (r))(r, r).

The above lemma is quite remarkable: not even clear that the LHS is an integer! This actually
implies a ∆O(k) algorithm for exactly computing f (k)(0):

Proof of Theorem 9.1. We just walk along all length-2k paths starting from r in T (r) to compute∑
r(A

2k
T (r))(r, r), which takes ∆O(k) time. Taking k = log(n/ε), this gives a ∆O(logn/ε) = (n/ε)C∆-

time algorithm to implement the Barvniok tecnique from last time: in particular, by Lemma 9.6
and (5), we can compute f (k)(0) for all k ≤ O(log n/ε), in the stated time, which then gives us the
desired polynomial approximation by the standard Taylor series bounds discussed last time.

Finally we prove Lemma 9.6.

Proof of Lemma 9.6. The proof strategy is as follows: we will use M̃G(z) = znMG(−1/z2) =

zn−2bn/2c∏bn/2c
i=1 (z −

√
|ri|)(z +

√
|ri|). Note that the −kth moments of MG (i.e.,

∑bn/2c
i=1 |ri|−k)

are equal to the 2kth moments of M̃G.

Look at (log M̃G(z))′ =
M̃′G(z)

M̃G(z)
. Expanding this out, we have:

M̃′G(z)

M̃G(z)
= z−1

bn/2c∑
i=1

1

1− 1/(|ri|z2)
= z−1

∞∑
k=0

z−2k

bn/2c∑
i=1

|ri|−k. (6)

We now need two lemmas.

Lemma 9.7. M̃′G(z) =
∑

r∈V M̃G−r(z).

Proof. Double-counting argument; left as exercise.

The above lemma implies that

M̃′G(z)

M̃G(z)
=
∑
r

M̃G−r(z)

M̃G(z)
= z ·

∑
r∈V

M̃T (r)−r(z)

M̃T (r)(z)
, (7)

where the second equality uses (2), together with the fact that the extra factors of z|T (r)|−1 cancel
out on the RHS.

Next, we need:
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Lemma 9.8. For all trees T , for all r ∈ T ,

z−1M̃T−r(z
−1)

M̃T (z−1)
=
∞∑
k=0

z2k(AT )2k(r, r).

Proof. We saw before that the LHS of the lemma statement is equal to

z−1 · det(z−1I −AT−r)
det(z−1I −AT )

.

Since T is a tree, there are no odd-length walks that go back to their starting point, and so RHS
is equal to

∞∑
k=0

zk(AkT )(r, r) = (I − zAT )−1(r, r).

Next, for a matrix B, we can define its adjugate, adj(B), to satisfy B · adj(B) = det(B) · I. By
Cramer’s rule, we have that

adj(B)ij = det(B−i,−j),

where B−i,−j is the submatrix of B after deleting row i and column j. Now we take B = z−1I ·AT .
Then

(I − zA)−1 = z−1(z−1I −A)−1 =
z−1

det(z−1I −A)
· adj(z−1I −A).

Now we take the (r, r)th entry of both sides. The (r, r) entry of adj(z−1I−A) is equal to det(z−1I−
AT−r) by Cramer’s rule, which must be equal to the (r, r) entry of (I − zAT )−1, and thus is equal
to the RHS Of the lemma statement.

The proof of Lemma 9.6 is concluded by combining (6) with (7) and Lemma 9.8.

10 October 12, 2023

Definition 10.1 (Stability). Let p(z1, . . . , zn) be a polynomial. Let T1, . . . , Tn ⊂ C. We say that
p is

∏
i Ti-stable if p(z) 6= 0 whenever zi ∈ Ti for all i. If Ti = T for all i, then we say that p is

T -stable.

Recall the Ising model:

ZG,β(λ) =
∑

σ:V→{±1}

exp

(
β

2
σ>AGσ

)
·
∏

v:σ(v)=1

λv,

where λ denotes the external field. Let S = {v : σ(v) = 1}, so that σ>AGσ = |E(S, S)| + |E(V −
S, V − S)| − 2|E(S, V − S)|. Then

ZG,β(λ) ∝
∑
S⊆V

exp (−2β|E(S, V − S)|) · λS ,

where λS =
∏
v∈S λv.

We have the following theorem:
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Theorem 10.1 (Lee-Yang, ’52). For all G and β ≥ 0, ZG,β(λ) is D-stable and D̄c-stable, where
D denotes the unit disk. Moreover, all zeros of ZG,β(t · 1) lie on the unit circle.

By Barvinok’s algorithm, this gives us a quasipolynomial-time algorithm for estimating the
partition function, as long as λ is bounded slightly away from 1. What was the original motivation?
Lee-Yang were looking for phase transitions. In particular, if you let Fβ(λ) = limn→∞

1
n logZGn,β,

then discontinuities of Fβ(λ) correspond to a phase transition. In particular, the Lee-Yang theorem
implies that if |λ− 1| > 0, then there is no phase transition.

To prove the theorem, we use induction: the base case is an edge, i.e., a graph with two vertices
and an edge between them.

Lemma 10.2. let a ∈ C with |a| ≤ 1. Then the bivariate polynomial 1+az1+āz2+z1z2 is D-stable.

Note that the Tutte polynomial ZG,β is a special case of the above, letting a = exp(−2β), for
β ≥ 0 (so that a ≤ 1).

Proof. Suppose that |a| = 1. Then p(z) = (1 + az1)(1 + z̄z2). Now clearly each of the factors is
D-stable, since |a| = 1.

Now suppose |a| < 1. For all z2, there is a unique z1 so that p(z1, z2) = 0. In particular,

z1 = f(z2) = −1 + āz2

a+ z2
.

It is now easy to check that f(D) ⊂ D̄c. f is a Mobius transformation, very well studied; here’s
one way to prove this: easy to check that f−1(z1) = −1+az1

ā+z1
. We claim that f(∂D) = ∂D. Since

f maps 0 outside of the circle, then by continuity, f maps the whole interior of the unit circle
to the exterior. To check that f maps ∂D to ∂D, we simply need to check that when |z| = 1,
|1 + āz| = |ā+ z|: |1 + āz| = |z̄ + ā| = |a+ z|, where the first equality is multiplying by |z̄|.

To prove the inductive step, we need the following theorem:

Theorem 10.3. Let p(z) =
∑

S⊂[n] aSz
S and q(z) =

∏
S⊂[n] bSz

S be D-stable polynomials. Then

(p ∗ q)(z) =
∑

S⊂[n] aSbSz
S is also D-stable.

We first show that Theorem 10.3 implies the Lee-Yang theorem.

Proof of Theorem 10.1. For all e = (u, v) ∈ E, let

pe(z) = (1 + exp(−2β)zu + exp(−2β)zv + zuzv) ·
∏
w 6=u,v

(1 + zw).

Observe:
Zβ,G(λ) = ∗e∈Epe.

If we know that each pe is D-stable, then by induction, the whole thing is D-stable. Moreover,
each pe is D-stable since the part of it not involving the product over w is D-stable.

To prove Theorem 10.3, we use the Assano-Raelle lemma:

Lemma 10.4 (Asano-Raelle). Let p(z1, z2) = a + bz1 + cz2 + dz1z2 be D-stable. Then so is
q(z) = a+ dz.
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The idea is we’re contracting out (removing) terms that only involve z1 or z2, but not both.

Proof. We can assume that a is nonzero (or else p is not D-stable). Note that q has a unique root
−a/d. We need |a| ≥ |d|. WLOG, we can assume |b| ≥ |c|.

Suppose |a| < |d| for contradiction. If p(z) = 0, then z1 = −a+cz2
b+dz2

. We want there to exist
z2 ∈ D so that z1 ∈ D aswell, i.e., |a + cz2| < |b + dz2|. We know |b| ≥ |c|, |d| > |a|. Hence
|b|+ |d| > |a|+ |c| ≥ |a+ cz2| for all z2 ∈ D. We just need z2 ∈ D so that |b+ dz2| ≈ |b|+ |d|. We
can make them arbitrarily close: in particular, first choose z2 so that dz2 has the same direction as
b, and then take |z2| → 1.

Now we prove Theorem 10.3.

Proof of Theorem 10.3. Let r(x1, . . . , xn, y1, . . . , yn) = p(x) · q(y). We apply the Asano-Ruelle
contractions to the tuples of variables {(xi, yi)}ni=1. In particular, for each i, we drop monomials
for which only xi or yi (but not both) occur in the monomial. By an inductive application of
Asano-Ruelle, at each step along these contractions, we are always preserving D-stability. At the
end of this, we get the polynomial

∑
S⊂[n] aSbSz

S . (Technically, the polynomial is
∑

S aSbS(xiyi)
n,

whose D-stability implies the D-stability of
∑

S aSbSz
S .)

Note that at each step of the contraction, we fix the values of all other variables (to something
arbitrary in the unit circle), that “restricted” polynomial is still D-stable. Then we apply Asano-
Ruelle, and since the fixing is arbitrary, we get from Asano-Ruelle that the contracted polynomial
is D-stable.

10.1 Independence polynomials

Now we study ZG(z) =
∑

I⊂V indep z
I , where the sum is over independent sets I.

Theorem 10.5 (Scott-Sokal ’05). Let p ∈ RV≥0. TFAE:

• ZG is stable wrt
∏
v∈V D(0, pv). (Think of pv as something that depends on the degree of v.)

• For all S ⊂ V , ZG[S](−p) > 0.

Note that Shearer’s condition is the sharpest conition under which we get zero-freeness (since
the above is an equivalence). Recall that G[S] is the induced subgraph on S and D(0, pv) is the
disk with center 0 and radius pv. Note also that Sherer’s condition is the sharpest condition under
which the Lovasz Local Lemma holds. Note that the above theorem tells us that we only have to
worry about the negative real axis wrt avoiding zeros.

Proof of Theorem 10.5. Clearly, ZG is stable with respect to
∏
v∈V D(0, pv) implies that for all

S ⊂ V , ZG[S](zS) = ZG(y), where yv = zv if v ∈ S, and 0 otherwise satisfies that ZG[S](−p) 6= 0. It
is in fact positive since it is positive at the point 0, and by continuity it can never be 0 when you
move between 0 and −pv.

Next we prove that Shearer’s condition implies stability. It suffices to prove that, for all v ∈ S
and all S ⊂ V and all z ∈

∏
v∈V D(0, pv),

|ZG[S](z)|
|ZG[S−v](z)|

≥
ZG[S](−p)
ZG[S−v](−p)

. (8)
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We now decompose
ZG(z) = ZG−v(z) + zv · ZG−N [v](z),

as we have done before. For simplicity we assume that S = V . By triangle inequality, we have

|ZG(z)|
|ZG−v(z)|

≥ 1− |zv| ·
|ZG−N [v](z)|
|ZG−v(z)|

.

We have |zv| ≤ pv. Moreover, for z = −p, the above is actually an equality!
So, it suffices to prove that

ZG−N [v](−p)
ZG−v(−p)

≥
|ZG−N [v](z)|
|ZG−v(z)|

.

To prove this, we use telescoping (same trick as for correlation decay). We order N(v) = u1, . . . , uk.
In particular, the left-hand side above is

k∏
i=1

ZG−v−u1−···−ui(−p)
ZG−v−u1−···−ui−1(−p)

.

Each of these ratios is lower bounded by the corresponding ratio for the corresponding smaller
graph G− v − u1 − · · · − ui−1 (using induction, i.e, the reciprocal of (8)).

Note that we also need to do the base case: Z{v}(z) = 1 + z ≥ 1− pv. Note that Z∅(z) = 1, and
this is immediate.

When is Shearer’s condition satisfied?

Theorem 10.6 (Dobrushin). If there is y ∈ RV≥0 so that pv ≤ yv∏
u∈N [v](1+yu) for all v ∈ V , then

Shearer’s condition is satisfied.

We don’t prove this, but give an example: suppose that G has max-degree ∆. Take y = 1/∆.
Then the univariate independent polynomial ZG(λ) is zero-free in D(0,∆∆ ·∆−∆−1).

Now we have that ∆∆/(∆ + 1)∆+1 ≈ 1/(e(∆ + 1)). the optimal threshold is (∆ − 1)∆−1/∆∆:
this is attained in the limit for (∆− 1)-ary trees.

Recall that the critical threshold for correlation decay is λc(∆) = (∆ − 2)∆/(∆ − 1)∆−1 ≈
e/(∆−1). This is larger than what we have above by a factor of e2 roughly. The zero-free region of
the independencee polynomial is asymmetric about the imginary axis. It is still an open problem
to characterize its full shape!

Here’s another (easier) condition:

Theorem 10.7 (Kotecky-Preiss). Fix p ∈ RV≥0. Suppose there is a ∈ RV≥0 so that
∑

u∈N [v] pu ·
ea(u) ≤ a(v) for all v ∈ V . Then Shearer’s condition holds.

The above requires only checking something on the neighborhood of each vertex. To prove the
above theorem:

Proof. Plug in yv = pv · ea(v) into Dobrushin.
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