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Overview: privacy-preserving PAC learning
• Machine learning models often trained on sensitive data; important 

to protect privacy of users’ data

• Our focus: fundamental private PAC model [Kasiviswanathan et al., ‘08]

• Recent development: connection between private learnability and
online learnability [Alon-Livni-Malliaris-Moran ‘19] [Bun-Livni-Moran ’20]
• This talk: answer two open questions on “online learnability ⇒ private 

learnability” from [Bun-Livni-Moran ’20]
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Overview

1. Background on Private PAC learning
2. Sample-efficient proper private PAC learning
• Key ingredient: irreducibility

3. Implications for sanitization.



Background: differential privacy
• Collection of individuals, each produces example 𝑥! , 𝑦! ∈ 𝑋 ×{−1,1}
• Dataset 𝑆" = 𝑥#, 𝑦# , … , 𝑥" , 𝑦" , (randomized) learner 𝐴:

({smoker, 51 years, female}, cancer)

({smoker, 24 years, male}, no cancer)

({non-smoker, 32 years, female}, no cancer)

Private learning 
algorithm 𝐴

Classifier 𝑓 ∶ 𝑋 → {−1,1}
predicting whether cancer 

present.

Definition: Algorithm 𝐴 is (𝝐, 𝜹)-differentially private (DP) if for all 
events 𝐸, for all neighboring datasets 𝑆!, 𝑆!′, 

Pr
"
𝐴 𝑆! ∈ 𝐸 ≤ 𝑒# ⋅ Pr

"
𝐴 𝑆!$ ∈ 𝐸 + 𝛿

Neighboring datasets: 
those which differ in a 
single example (𝑥! , 𝑦!)

In this talk: 𝜖 ≤ 𝑂(1) (e.g., 𝜖 = 0.01),    𝛿 < 1/𝑛!(#) (e.g., 𝛿 = 𝑛% &'( ))



PAC learning 

• Given a known class 𝐹 of hypotheses, i.e., functions 𝑓 ∶ 𝑋 → {−1,1}
• 𝑆" = 𝑥#, 𝑦# , … , 𝑥" , 𝑦" is drawn i.i.d. from unknown distribution 
𝑃 on 𝑋 ×{−1,1}
• Goal: algorithm 𝐴(𝑆") outputs 6𝑓: 𝑋 → {−1,1} minimizing

err$ 6𝑓 ≔ Pr
%,' ∼$

[ 6𝑓 𝑥 ≠ 𝑦]

• In this talk: realizable setting (WLOG by [Alon-Beimel-Moran-Stemmer, ‘20]): 
exists 𝑓∗ ∈ 𝐹 so that 𝑓∗ 𝑥 = 𝑦 for all 𝑥, 𝑦 ∈ support(𝑃)

• 𝐴 is proper if 6𝑓 ∈ 𝐹 almost surely, otherwise is improper

({smoker, 51 years, female}, 
cancer)

({smoker, 24 years, male}, no 
cancer)

({non-smoker, 32 years, female}, no 
cancer)

Learning 
algorithm 𝐴

Classifier 𝑓 ∶ 𝑋 →
{−1,1}

predicting whether 
cancer present.



Background: private PAC learning, Littlestone dimension

• Private PAC model: algorithm 𝐴 mapping 𝑆" ↦ 6𝑓 must be (𝜖, 𝛿)-DP
• Hypotheses classes 𝐹 with a private PAC learning algorithm achieving 

error 𝑜(1) are exactly those with finite Littlestone dimension [Alon-Livni-
Malliaris-Moran ‘19] [Bun-Livni-Moran ‘20]

Defn: Littlestone dimension of hypothesis class 𝐹, denoted Ldim(𝐹), is 
largest 𝑑 so that there exists tree of depth 𝑑 shattered by 𝐹.

𝑥"

𝑥#" 𝑥##

𝑥$" 𝑥$# 𝑥$$ 𝑥$%

-1

-1 -1

-1 -1 -1 -1

1

1 1

1 1 1 1

Defn: For a binary tree with all internal nodes labeled by elements of 𝑋, 
edges labeled by −1,1 :
• It is shattered by 𝐹 if for each leaf ℓ there is some 𝑓ℓ ∈ 𝐹 which labels all 

nodes on the root-to-leaf path for ℓ according to the labels on the edges.
• E.g., for the green leaf: need 𝑓ℓ 𝑥" = −1, 𝑓ℓ 𝑥#" = 1, 𝑓ℓ 𝑥$# = 1.

• Finiteness of Littlestone dim. of 𝐹 also characterizes its online learnability



Examples: finite Littlestone dimension classes
• Any finite class 𝐹 has Littlestone dimension Ldim 𝐹 ≤ log( 𝐹 )
• Class of threshold functions on 𝑋 = {1, 2, … , 2*} has Ldim 𝐹 = 𝑑

• 28 such thresholds; threshold 𝑖 evaluates to 1 on 𝑗 ∈ 𝑋 iff 𝑖 ≤ 𝑗

• Throughout this talk: will use 𝒅 to denote Ldim(𝑭)
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Example of shattered tree for 
𝑑 = 3:

Green leaf corresponds to threshold 
which evaluates to 1 on 𝑥 iff 𝑥 ≤ 3



Prior work: sample complexity of private & 
non-private learning
• Minimum number of samples 𝑛 to achieve error 𝛼 = 𝑜(1) in the:

(Non-private) PAC setting:

𝚯𝜶(𝐕𝐂𝐝𝐢𝐦 𝑭 )

(where 𝑉𝐶𝑑𝑖𝑚 𝐹 is the VC dimension 
of 𝐹) [Vapnik-Chervonenkis, ‘71]

Private PAC setting:

𝒏 ≤ 𝑶𝜶,𝝐,𝜹(𝟐𝐋𝐝𝐢𝐦 𝑭 )
𝒏 ≥ 𝛀(𝐥𝐨𝐠∗(𝐋𝐝𝐢𝐦 𝑭 )

[Alon-Livni-Malliaris-Moran ‘19] [Bun-Livni-
Moran ’20]

Remarks:
• VCdim 𝐹 ≤ Ldim(𝐹) for all 𝐹; moreover, gap between them can be arbitrarily big.
• For private PAC learning, can’t hope for bound sublinear in Ldim(𝐹) if you want 

bound to depend only on Ldim(𝐹) since there is 𝐹 with VCdim 𝐹 = Ldim(𝐹).
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1. Background on Private PAC learning
2. Sample-efficient proper private PAC learning
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3. Implications for sanitization.



Sample-efficient proper private learning
• Let 𝐹 be a hypothesis class of Littlestone dimension 𝑑, consisting of 
𝑓 ∶ 𝑋 → −1,1
• Let 𝑃 be a realizable distribution on 𝑋 ×{−1,1}

• Recall: that 6𝑓 ∈ 𝐹 means 𝐴 is proper
• [Bun-Livni-Moran, ‘20] showed a sample complexity bound of 𝑛 ≈
+!(#)

,-
, and their learner was not proper

Theorem: For 𝑛 = P𝑂( <
!

#="
), there is an algorithm 𝐴 which takes as input 𝑛 i.i.d. 

samples from 𝑃, is (𝜖, 𝛿)-DP, and outputs with high probability a hypothesis 
T𝑓 ∈ 𝐹 with classification error under 𝑃 at most 𝛼 (i.e., err> 𝑓 ≤ 𝛼).



Proof overview: irreducibility
1. Show existence of an improper learner with polynomial sample 

complexity
• Outputs SOA classifier for subclass satisfying special property: 𝑘-irreducibility

2. Use irreducibility and a min-max swap (i.e., Sion’s minimax 
theorem) to “upgrade” the improper learner to a proper one

• Main idea: the SOA classifier for irreducible classes has certain 
“stability” properties conducive to the SOA classifier being private

Definition: A hypothesis class 𝐺 consisting of 𝑓: 𝑋 → {−1,1} is 1-irreducible if for 
any 𝑥 ∈ 𝑋, there is some 𝑏 ∈ {−1,1} so that

Ldim 𝑔 ∈ 𝐺 ∶ 𝑔 𝑥 = 𝑏 = Ldim 𝐺 For 𝑘 ≥ 1, 𝒌-irreducibility 
generalizes 1-irreducibility.



SOA hypotheses & irreducibility
• For 𝐺 ⊂ 𝐹, 𝑏 ∈ {−1,1}: define 𝐺|(%,/) ≔ {𝑔 ∈ 𝐺 ∶ 𝑔 𝑥 = 𝑏 }
• For 𝐺 ⊂ 𝐹, define SOA hypothesis SOA1 : 𝑋 → −1,1 , by:

SOA1 𝑥 = `1 if Ldim 𝐺|(%,#) ≥ Ldim(𝐺|(%,2#))
−1 otherwise

• Example: point functions 𝐺 on 𝑋 = 𝑥#, … , 𝑥3 ; 𝐺 = {𝑔#, … , 𝑔3}:

“restriction of 𝐺 to (𝑥, 𝑏)”

X-value 𝒈𝟏 𝒈𝟐 𝒈𝟑 𝒈𝟒 𝒈𝟓 𝐒𝐎𝐀𝑮
𝑥" 1 -1 -1 -1 -1 -1

𝑥# -1 1 -1 -1 -1 -1

𝑥$ -1 -1 1 -1 -1 -1

𝑥% -1 -1 -1 1 -1 -1

𝑥- -1 -1 -1 -1 -1 -1

• 𝐺 is irreducible: Ldim 𝐺 = 1, and Ldim 𝐺|(%,2#) = 1 for all 𝑥 ∈ 𝑋
• Since Ldim 𝐺|(%,#) = 0 for all 𝑥, SOA1 𝑥 = −1 for all 𝑥 ∈ 𝑋

𝐺 is 1-irreducible if for any 𝑥 ∈ 𝑋, 
there is some 𝑏 ∈ {−1,1} so that

Ldim 𝐺|(/,1) = Ldim 𝐺



Simple properties of irreducibility

Lemma 2 (“stability of SOAs”): Suppose that 𝐻 ⊂ 𝐺, Ldim 𝐻 = Ldim(𝐺), and that 𝐻 is 
1-irreducible. Then SOAH = SOAI, i.e., for all 𝑥 ∈ 𝑋, SOAH(𝑥) = SOAI(𝑥).

Lemma 1 (alternative phrasing of irreducibility defn): Suppose 𝐻 is 1-irreducible. For 𝑥 ∈
𝑋 and 𝑏 ∈ {−1,1},  𝑏 = SOAI(𝑥) if and only if Ldim 𝐻|(J,K) = Ldim(𝐻).

Proof is simple: fix any 𝑥 ∈ 𝑋, suppose SOAI 𝑥 = 1 (-1 is similar). Then:

Ldim 𝐺|(J,L) ≥ Ldim 𝐻| J,L = Ldim 𝐻 = Ldim(𝐺)

and so Ldim 𝐺|(J,L) = Ldim(𝐺), i.e., SOAH 𝑥 = 1 = SOAI (𝑥).
Lemma 1



Proof: SOA hypotheses
• For 𝐺 ⊂ 𝐹, 𝑏 ∈ {−1,1}: define 𝐺|(%,/) ≔ {𝑔 ∈ 𝐺 ∶ 𝑔 𝑥 = 𝑏 }.
• For 𝐺 ⊂ 𝐹, define SOA hypothesis SOA1 : 𝑋 → −1,1 , by:

SOA1 𝑥 = `1 if Ldim 𝐺|(%,#) ≥ Ldim(𝐺|(%,2#))
−1 otherwise

• Note: if 𝐺 is 1-irreducible, never have Ldim 𝐺|(%,#) = Ldim(𝐺|(%,2#)).
• Main step of proof: 

Lemma (relaxed global stability): Given 𝑃, there is a hypothesis 𝜎∗ ∶ 𝑋 → {−1,1} so that 
given a dataset 𝑆N = 𝑥L, 𝑦L , … , 𝑥N, 𝑦N drawn iid from 𝑃 with 𝑛 = poly(𝑑), we can 
construct from 𝑆N subclasses L𝐺L, … , L𝐺O ⊂ 𝐹 so that:

1. Each SOA PH4 has low population error w.h.p. (i.e., errQ(SOA PH4) is small)

2. With probability ≈ L
8

over 𝑆N, there is some 𝑗 ≤ 𝐽 so that SOA PH4 = 𝜎∗.

Depending only on 𝑃, not on the 
dataset 𝑆3.

“restriction of 𝐺 to (𝑥, 𝑏)”



Using relaxed global stability

• Consequence: with 𝑚 ≈ #𝑂(𝑑) independent draws of 𝑆#, can w.h.p discover some such 𝜎∗ --
turns out to be enough for private learnability (intuitively clear):
• In particular, use a private sparse selection protocol ([BNS, ‘16; GKM, ‘20])

Lemma (relaxed global stability): Given 𝑃, there is a “special” hypothesis 𝜎∗ ∶ 𝑋 →
{−1,1} so that given a dataset 𝑆N = 𝑥L, 𝑦L , … , 𝑥N, 𝑦N drawn iid from 𝑃 with 𝑛 =
poly(𝑑), we can construct from 𝑆N subclasses L𝐺L, … , L𝐺O ⊂ 𝐹 so that:

1. Each SOA PH4 has low population error w.h.p. (i.e., errQ(SOA PH4) is small)

2. With probability ≈ L
8

over 𝑆N, there is some 𝑗 ≤ 𝐽 so that SOA PH4 = 𝜎∗.

Will have 
𝐽 = 24(5!)

𝑆3
(")

𝑆3
(#)

𝑆3
(6)

⋯

SOA 78"
(") , … , SOA 78%

(")

SOA 78"
(!) , … , SOA 78%

(!)

SOA 78"
(&) , … , SOA 78%

(&)

Full 
dataset

Private sparse 
selection protocol:

𝜎∗

⋯



Proof of “relaxed global stability” lemma
Lemma (relaxed global stability): Given 𝑃, there is a hypothesis 𝜎∗ ∶ 𝑋 → {−1,1} so that given a dataset 𝑆( = 𝑥), 𝑦) , … , 𝑥(, 𝑦( drawn iid
from 𝑃 with 𝑛 = poly(𝑑), we can construct from 𝑆( subclasses 8𝐺), … , 8𝐺* ⊂ 𝐹 so that:

1. Each SOA +,! has low population error (i.e., err-(SOA +,!) is small)

2. With probability ≈ )
.

over 𝑆(, there is some 𝑗 ≤ 𝐽 so that SOA +,! = 𝜎∗.

• Notation: for distribution 𝑄 and 𝛼 > 0, set 𝐹[,\ ≔ {𝑓 ∈ 𝐹 ∶ err[ 𝑓 ≤ 𝛼}.
• Idea: condition on whether below assumption holds, where 𝛼 > 0 is some small 

parameter representing “acceptable” population error and 𝛼] ≪ 𝛼:

Assumption: For a  given sample 𝑆N, it holds that 
Ldim 𝐹 PQ5,\ = Ldim 𝐹 PQ5,\^\6 and 𝐹 PQ5,\^\6 is 1-irreducible.

• If Assumption holds: by VC theory, 𝐹 PQ5,\^\6 ⊂ 𝐹Q,\^\6/` ⊂ 𝐹 PQ5,\, and so all 3 have 
equal Ldim; using irreducibility, by Lemma on prev. slide, SOAa7,8986/; = SOAa<75,8986 .

• Else: find 𝑥 so that Ldim 𝐹 PQ5,\^\6|(J,L) , Ldim 𝐹 PQ5,\^\6|(J,^L) < Ldim(𝐹 PQ5,\^\6), 
“recurse” on 𝐹|(J,L) and 𝐹|(J,^L).

Set 𝜎∗ =
SOA:/,1213/!

P𝑃3 is empirical distr. for 𝑆3, i.e.,
uniform distribution on 
{ 𝑥", 𝑦" , … , 𝑥3, 𝑦3 }.



Generalization of 1-irreducibility
Definition: A hypothesis class 𝐺 consisting of 𝑓: 𝑋 → {−1,1} is k-irreducible if for 
any depth-𝑘 tree 𝒙, there is some 𝑏?, … , 𝑏@ ∈ {−1,1} so that

Ldim 𝐹| 𝒙%,B% , 𝒙" B% ,B" ,…,(𝒙& B%:&(% ,B&) = Ldim(𝐹)

• In words: there is some leaf of the tree 𝒙 so that the Ldim of the 
class restricted to that leaf is equal to the Ldim of 𝐹.

• Important for the general inductive step of the proof.



Overview

1. Background on Private PAC learning
2. Sample-efficient proper private PAC learning
• Key ingredient: irreducibility

3. Implications for sanitization.



Background: sanitization [Blum-Ligett-Roth, ’08; Beimel-Nissim-Stemmer, ‘14]

• Sanitization (i.e., private query release): give an estimate for the 
mean of each binary hypothesis 𝑓 ∈ 𝐹 over a given dataset 𝑆.

({smoker, 51 years, female, cancer})

({smoker, 24 years, male, no cancer})

({non-smoker, 32 years, female, no cancer})

Sanitizer 𝐴

• 2/3 of dataset is a smoker
• 1/3 of dataset is smoker with 

cancer
• Etc. (other queries)

Definition: Fix 𝑋, 𝐹. Algorithm 𝐴 is a sanitizer for 𝐹 with accuracy 𝛼 and sample 
complexity 𝑛 if it is (𝜖, 𝛿)-DP and for all datasets 𝑆 = 𝑥?, … , 𝑥! ∈ 𝑋!, 𝐴(𝑆)
outputs Est: 𝐹 → [−1,1], so that, with high probability, for all 𝑓 ∈ 𝐹,

Est 𝑓 −
1
𝑛m
DE?

!

𝑓(𝑥D) ≤ 𝛼



Implications for sanitization
• [Bousquet-Livni-Moran ‘20]: “Private proper learning” ⇒ “sanitization”
• Our result: “Finite Littlestone dim.” ⇒ “Private proper learning”; so:

• Dual Littlestone dimension 𝑑∗ of 𝐹 is the Littlestone dimension of the 
dual class of 𝐹
• Known that  𝑑∗ ≤ 2+#%&, and so also using [Bun-Nissim-Stemmer-Vadhan, ‘15]:

Corollary: Suppose 𝐹 has Littlestone dimension 𝑑 & dual Littlestone dimension 𝑑∗. 

For 𝑛 = P𝑂(<
! <∗

#=)
), 𝐹 has a sanitizer with sample complexity 𝑛 and accuracy 𝛼.  

Corollary: 𝐹 is sanitizable (i.e., has a sanitizer with sample complexity poly(1/𝛼)) if 
and only if it has finite Littlestone dimension.



Open Questions
• Main question: characterization of sample complexity of (proper & 

improper) learning with approximate DP, up to a constant (ideally)
• VC dimension gives characterization for (non-private) PAC learning [Vapnik, ‘98]
• Littlestone dimension does so for online learning [Littlestone, ‘87; Ben-David, Pál-Shalev-

Shwartz, ‘09]
• One-way public coin CC does so for PAC learning with pure DP [Beimel-Nissim-Stemmer, 

‘19; Feldman-Xiao, ‘14]

• Intermediate questions:
• Can we get 𝑂(Ldim 𝐹 ) samples? (Can’t do better for 𝐹 s.t. Ldim 𝐹 = VCdim(𝐹))
• Best known lower bound is Ω(VCdim 𝐹 + log∗ Ldim 𝐹 ) [Alon-Livni-Malliaris-Moran, 

‘20]; so can we get upper bound of poly(VCdim 𝐹 , log∗ Ldim 𝐹 )?

• Can the sample complexity of proper private learning (w/ approximate DP) 
be asymptotically larger than that for improper private learning?
• Answer is “yes” for pure DP [Beimel-Brenner-Kasiviswanathan-Nissim, ‘14]

Thank you for listening!


