New Guarantees for Interactive Decision Making with the Decision-Estimation Coefficient

Noah Golowich

Based on joint work with

Dean P. Foster, Dylan J. Foster, Yanjun Han, & Sasha Rakhlin

Overview of the talk

- Single-agent decision-making with structured observations (DMSO):
 - Review of the setting (covered in Dylan's talk)
 - Constrained DEC
 - Tight upper & lower bounds

• Multi-agent DMSO: fundamental differences from single-agent setting

- Introduction of the setting
- Upper & lower bounds
- Connection with partial monitoring
- Baseline upper bound by single-agent DEC (fixed point argument)

Overview of the talk

- Single-agent decision-making with structured observations (DMSO):
 - Review of the setting (covered in Dylan's talk)
 - Constrained DEC
 - Tight upper & lower bounds
- Multi-agent DMSO: fundamental differences from single-agent setting
 - Introduction of the setting
 - Upper & lower bounds
 - Connection with partial monitoring
 - Baseline upper bound by single-agent DEC (fixed point argument)

Motivation: learning and decision-making

(Un)supervised Learning:

prediction based on data from a given distribution:

"How many samples do we need to learn":

 VC dimension, Rademacher complexity, online variants (e.g., Littlestone dimension), etc. **Decision-making**: actively gather information, i.e., data distribution depends on decisions:

"How many rounds of interaction do we need to learn?":

• This talk

Decision Making with Structured Observations (DMSO) – PAC setting [Foster-Kakade-Qian-Rakhlin, '21]

An **agent** interacts with **environment** over *T* time steps:

At each round $t \in [T]$:

- 1. Agent selects decision $\pi^t \in \Pi$, where Π is agent's decision space
- 2. Environment reveals $r^t \in [0,1]$, $o^t \in O$, where $(r^t, o^t) \sim M^*(\pi^t)$, where M^* is underlying model

In PAC setting – at termination:

• Learner selects output decision $\hat{\pi} \in \Pi$ (perhaps at random)

Contrast with **regret setting** (discussed later)

DMSO: Realizability and Risk

At each round $t \in [T]$:

- 1. Agent selects decision $\pi^t \in \Pi$
- 2. Environment reveals $r^t \in [0,1]$, $o^t \in O$, where $(r^t, o^t) \sim M^*(\pi^t)$
- At termination (PAC setting):
- Learner selects output decision $\hat{\pi}$

Formally: a model is a mapping $M : \Pi \rightarrow \Delta([0,1] \times \mathcal{O})$

Realizability assumption: for a known model class \mathcal{M} , we have $M^* \in \mathcal{M}$

In **PAC setting**: goal is to minimize **risk** of output decision $\hat{\pi}$: **Risk** $(T) \coloneqq \mathbb{E} [f^{M^*}(\pi_{M^*}) - f^{M^*}(\hat{\pi})]$

where:

$$f^{M}(\pi) = \mathbb{E}^{M}[r|\pi], \qquad \qquad \pi_{M} \coloneqq \operatorname{argmax}_{\pi \in \Pi} f^{M}(\pi)$$

Examples of DMSO

- Stochastic multi-armed bandits
- Structured bandit generalizations
 - Linear bandits
 - Concave bandits
- Reinforcement learning
 - Tabular
 - Function approximation

Decision-Estimation Coefficient: prior work

Is there a unified complexity measure that yields upper & lower bounds for any given model class?

- [Foster-Kakade-Qian-Rakhlin, '21] introduce decision-estimation coefficient (DEC), a complexity measure for arbitrary model classes \mathcal{M}
- DEC gives upper & lower bounds on optimal risk achievable by any algorithm for ${\cal M}$
- Upper & lower bounds in terms of DEC of [FKQR, '21] have several gaps
 - In certain cases the resulting upper & lower bounds can be arbitrarily far apart

Can these gaps be removed, so that we get a **tight characterization of optimal risk attainable**?

Given \mathcal{M} , reference model \overline{M} : $\Pi \to \Delta([0,1] \times \mathcal{O})$ and $\varepsilon > 0$, define:

$$\operatorname{Pdec}_{\varepsilon}^{\mathsf{C}}(\mathcal{M},\overline{M}) \coloneqq \min_{p,q \in \Delta(\Pi)} \max_{M \in \mathcal{M}} \left\{ \mathbb{E}_{\pi \sim p} \left[f^{M}(\pi_{M}) - f^{M}(\pi) \right] \middle| \mathbb{E}_{\pi \sim q} \left[D_{\operatorname{Hel}}^{2}(\mathcal{M}(\pi), \overline{M}(\pi)) \right] \leq \varepsilon^{2} \right\}$$

Risk of decision Constraint set around reference model

where:

• π_M is optimal decision for model M

•
$$D_{\text{Hel}}^2(P,Q) = \int \left(\sqrt{P(dx)} - \sqrt{Q(dx)}\right)^2$$
 is Hellinger distance between distributions P,Q

Idea is to find:

- Optimal **exploratory distribution** *q* to constrain model class to only those near \overline{M} for polices $\pi \sim q$
- Optimal exploitation distribution p to choose low-risk decision for all models in constrained model class

Constrained DEC: our results

$$\operatorname{Pdec}_{\varepsilon}^{c}(\mathcal{M}) \coloneqq \sup_{\overline{M}} \operatorname{Pdec}_{\varepsilon}^{c}(\mathcal{M}, \overline{M})$$

Theorem [Foster-**G**-Han, '23]: For any \mathcal{M} , optimal risk for T rounds satisfies: $\Omega(1) \cdot \operatorname{Pdec}_{\mathcal{E}_*}^{\mathsf{c}}(\mathcal{M}) \leq \mathbb{E}[\operatorname{Risk}(T)] \leq O(1) \cdot \operatorname{Pdec}_{\mathcal{E}^*}^{\mathsf{c}}(\mathcal{M})$ where $\mathcal{E}_* = \widetilde{\Theta}(\sqrt{1/T}), \mathcal{E}^* = \widetilde{\Theta}(\sqrt{\log |\mathcal{M}|/T})$ [FKQR, '21] obser

[FKQR, '21] observed that this gap is unimprovable in general – challenging/deep open question

- Only gap between upper and lower bounds: $\varepsilon^* \simeq \sqrt{\log |\mathcal{M}|} \cdot \varepsilon_*$
- We prove tighter bound for $\varepsilon^* = \widetilde{\Theta}(\sqrt{Est_{Hel}/T})$, where Est_{Hel} is upper bound on online cumulative estimation error for \mathcal{M} for Hellinger dist.
 - Have $\mathbf{Est}_{\mathrm{Hel}} \lesssim \log |\,\mathcal{M}|$ by using exponential weights algorithm

Constrained DEC and Optimal Risk: Examples

Theorem [Foster-**G**-Han, '23]: Optimal risk for *T* rounds satisfies: $\Omega(1) \cdot \operatorname{Pdec}_{\mathcal{E}_*}^{\mathsf{c}}(\mathcal{M}) \leq \mathbb{E}[\operatorname{Risk}(T)] \leq O(1) \cdot \operatorname{Pdec}_{\mathcal{E}^*}^{\mathsf{c}}(\mathcal{M})$ where $\mathcal{E}_* = \widetilde{\Theta}(\sqrt{1/T}), \mathcal{E}^* = \widetilde{\Theta}(\sqrt{\operatorname{Est}_{\operatorname{Hel}}/T})$

Multi-armed bandits with A arms:

- Can show $\operatorname{Pdec}_{\varepsilon}^{c}(\mathcal{M}) \asymp \sqrt{A} \cdot \varepsilon$
- Via a uniform covering argument, can show $\mathbf{Est}_{\mathrm{Hel}} \lesssim A$
- So above theorem gives: $poly(A) \cdot \sqrt{T} \leq \mathbb{E}[\mathbf{Risk}(T)] \leq poly(A) \cdot \sqrt{T}$

Tabular RL with *S* states, *A* actions, horizon *H*:

- Can show $\varepsilon \cdot \sqrt{HSA} \lesssim \operatorname{Pdec}_{\varepsilon}^{c}(\mathcal{M}) \lesssim \varepsilon \cdot \sqrt{H^{2}SA}$
- Above theorem gives: $\sqrt{HSAT} \leq \mathbb{E}[\mathbf{Risk}(T)] \leq \sqrt{H^4S^3A^2T}$

Results for regret

- At each round $t \in [T]$:
- 1. Agent selects decision $\pi^t \in \Pi$
- 2. Environment reveals $r^t \in [0,1]$, $o^t \in O$, where $(r^t, o^t) \sim M^*(\pi^t)$
- **Regret**: measures suboptimality of all π^t :

$$\operatorname{Reg}(T) \coloneqq \sum_{t=1}^{r} \mathbb{E}\left[f^{M^{\star}}(\pi_{M^{\star}}) - f^{M^{\star}}(\pi^{t})\right]$$

Given \mathcal{M} , reference model \overline{M} : $\Pi \to \Delta([0,1] \times \mathcal{O})$ and $\varepsilon > 0$, define: $\operatorname{Rdec}_{\varepsilon}^{c}(\mathcal{M}, \overline{M}) \coloneqq \min_{p \in \Delta(\Pi)} \max_{M \in \mathcal{M}} \{\mathbb{E}_{\pi \sim p}[f^{M}(\pi_{M}) - f^{M}(\pi)] | \mathbb{E}_{\pi \sim p}[D^{2}_{\operatorname{Hel}}(M(\pi), \overline{M}(\pi))] \leq \varepsilon^{2} \}$ Risk of decision
Constraint set around reference model

• Difference with PAC setting: same p used for exploration and exploitation

Results for regret

Given \mathcal{M} , reference model \overline{M} : $\Pi \to \Delta([0,1] \times \mathcal{O})$ and $\varepsilon > 0$, define:

$$\operatorname{Rdec}_{\varepsilon}^{\mathsf{C}}(\mathcal{M},\overline{M}) \coloneqq \min_{p \in \mathcal{A}(\Pi)} \max_{M \in \mathcal{M}} \left\{ \mathbb{E}_{\pi \sim p} \left[f^{\mathsf{M}}(\pi_{\mathsf{M}}) - f^{\mathsf{M}}(\pi) \right] \middle| \mathbb{E}_{\pi \sim p} \left[D_{\operatorname{Hel}}^{2}(\mathcal{M}(\pi), \overline{\mathcal{M}}(\pi)) \right] \leq \varepsilon^{2} \right\}$$

Risk of decision Constraint set around reference model

Write
$$\operatorname{Rdec}_{\varepsilon}^{c}(\mathcal{M}) \coloneqq \sup_{\overline{M}} \operatorname{Rdec}_{\varepsilon}^{c}(\mathcal{M} \cup \{\overline{M}\}, \overline{M})$$

Note: unlike in PAC setting, \overline{M} is added to model class in DEC definition above!

Theorem [Foster-**G**-Han, '23]: Optimal regret for *T* rounds satisfies: $\Omega(1) \cdot \operatorname{Rdec}_{\varepsilon_*}^{\mathsf{c}}(\mathcal{M}) \leq \mathbb{E}[\operatorname{Reg}(T)] \leq O(1) \cdot \operatorname{Rdec}_{\varepsilon^*}^{\mathsf{c}}(\mathcal{M})$ where $\varepsilon_* = \widetilde{\Theta}(\sqrt{1/T}), \varepsilon^* = \widetilde{\Theta}(\sqrt{\operatorname{Est}_{\operatorname{Hel}}/T})$

Constrained DEC: improvement over [FKQR, 21']

• Recall definition of (regret) offset DEC (from Dylan's talk):

 $\operatorname{Rdec}_{\gamma}^{0}(\mathcal{M},\overline{M}) \coloneqq \min_{p \in \Delta(\Pi)} \max_{M \in \mathcal{M}} \{\mathbb{E}_{\pi \sim p}[f^{M}(\pi_{M}) - f^{M}(\pi)] - \gamma \mathbb{E}_{\pi \sim p}[D^{2}_{\operatorname{Hel}}(M(\pi),\overline{M}(\pi))]\}$

Bounds of [FKQR, '21] on $\mathbb{E}[\operatorname{Reg}(T)]$ in terms of $\operatorname{Rdec}^{o}_{\gamma}(\mathcal{M}, \overline{M})$ has gaps:

- 1. Restrict to "localized subclass" $\mathcal{M}' \subset \mathcal{M}$ for lower (but not upper) bound
 - Roughly, \mathcal{M}' consists of models M with $\|f^M f^{\overline{M}}\|_{\infty} \leq \frac{\gamma}{\tau}$
- 2. Need to restrict to proper reference models $\overline{M} \in \mathcal{M}$ for the lower bound but $\overline{M} \in co(\mathcal{M})$ for upper bound

Key point: both points lead to arbitrarily large gaps between upper & lower bounds – our bounds in terms of constrained DEC close both gaps!

Introduction of constrained DEC is one of our contributions

Constrained [this paper] VS Offset [FKQR, 21'] DEC

 $\operatorname{Rdec}_{\varepsilon}^{c}(\mathcal{M},\overline{M}) \coloneqq \min_{p \in \Delta(\Pi)} \max_{M \in \mathcal{M}} \left\{ \mathbb{E}_{\pi \sim p}[f^{M}(\pi_{M}) - f^{M}(\pi)] \middle| \mathbb{E}_{\pi \sim p}[D^{2}_{\operatorname{Hel}}(M(\pi),\overline{M}(\pi))] \leq \varepsilon^{2} \right\}$

 $\operatorname{Rdec}_{\gamma}^{o}(\mathcal{M},\overline{M}) \coloneqq \min_{p \in \Delta(\Pi)} \max_{M \in \mathcal{M}} \{\mathbb{E}_{\pi \sim p}[f^{M}(\pi_{M}) - f^{M}(\pi)] - \gamma \mathbb{E}_{\pi \sim p}[D^{2}_{\operatorname{Hel}}(M(\pi),\overline{M}(\pi))]\}$

- Can always upper bound $\operatorname{Rdec}^{\operatorname{c}}_{\varepsilon}(\mathcal{M},\overline{M})$ by $\operatorname{Rdec}^{\operatorname{o}}_{\gamma}(\mathcal{M},\overline{M})$
- Converse does not hold in general (only in a weak sense) unless you localize
- Similar considerations hold for PAC version

Summary of DEC:

	Regret	PAC
Constrained	$\operatorname{Rdec}_{\varepsilon}^{\operatorname{c}}(\mathcal{M},\overline{M})$	$\operatorname{Pdec}_{\varepsilon}^{\operatorname{c}}(\mathcal{M},\overline{M})$
Offset	$\operatorname{Rdec}^{\operatorname{o}}_{\gamma}(\mathcal{M},\overline{M})$	$\operatorname{Pdec}^{\operatorname{o}}_{\gamma}(\mathcal{M},\overline{M})$

Proof idea: upper bound

$$\mathbb{E}[\mathbf{Risk}(T)] \le O(1) \cdot \mathrm{Pdec}_{\varepsilon^*}^{\mathsf{c}}(\mathcal{M}) \text{ for } \varepsilon^* = \widetilde{\Theta}(\sqrt{\mathbf{Est}_{\mathrm{Hel}}/T})$$

Basic skeleton: E2D algorithm of [FKQR, 21]

Main Challenge: constrained nature of DEC means we need to ensure that, for outputting final policy, model estimate produced by estimation oracle is close to M^{\star}

• Address this by using a confidence set at termination of algorithm

$$\mathbb{E}[\operatorname{Reg}(T)] \le O(1) \cdot \operatorname{Rdec}_{\varepsilon^*}^{\mathsf{c}}(\mathcal{M}) \quad \text{for} \quad \varepsilon^* = \widetilde{\Theta}(\sqrt{\operatorname{Est}_{\operatorname{Hel}}/T})$$

Similar to PAC bound on $\mathbb{E}[\mathbf{Risk}(T)]$ above, but overcome **Main Challenge** by using sequence of confidence sets over multiple epochs

Overview of the talk

- Single-agent decision-making with structured observations (DMSO):
 - Review of the setting (covered in Dylan's talk)
 - Constrained DEC
 - Tight upper & lower bounds

• Multi-agent DMSO: fundamental differences from single-agent setting

- Introduction of the setting
- Upper & lower bounds
- Connection with partial monitoring
- Baseline upper bound by single-agent DEC (fixed point argument)

Multi-agent DMSO: Setting

K agents interact with environment over T time steps:

We consider **centralized**, **PAC** setting throughout.

At each round $t \in [T]$:

Ri

- 1. Each agent k selects decision $\pi_k^t \in \Pi_k$, where Π_k is agent's decision space
- 2. Environment M^* reveals $r_k^t \in [0,1]$, $o^t \in \mathcal{O}$, to each agent k At termination:
- Each agent chooses output decision $\hat{\pi}_k \in \Pi_k$ (perhaps at random) **Goal**: minimize distance of $\hat{\pi}$: = $(\hat{\pi}_1, ..., \hat{\pi}_K)$ from being a (Nash) equilibrium

$$\mathbf{sk_{Nash}}(T) \coloneqq \mathbb{E} \left[\sum_{k} \operatorname{Amount agent} k \operatorname{can gain}_{k} \operatorname{deviating from} \hat{\pi}_{k} \right]$$

This talk: we focus on approaching Nash equilibria; have analogues for CCE, CE, etc. in paper.

by

Example of multi-agent DMSO: normal-form bandit games

Normal-form bandit games:

- $\Pi_k = \Delta(A_k)$ for finite action set A_k
- r_k^t is stochastic reward for k upon joint play of π_1^t, \ldots, π_K^t
- $\mathcal{O} = \{\emptyset\}$
- $\mathcal{M} =$ "all mappings from $\Pi = \Pi_1 \times \cdots \times \Pi_K$ to distributions on $[0,1]^{K''}$

Many generalizations:

- Linear bandit games (payoffs are multilinear)
- Concave bandit games (each agent's payoffs are concave)

$$\underbrace{ \begin{array}{c} \text{decision } \pi_k^t \in \Pi_k \\ \text{reward } r_k^t \in [0,1], \text{ observation } o^t \in \mathcal{O} \end{array} }_{k}$$

	Silent	Confess
;	A:-1, B:-1	A:-15, B;0
s	A:0, B:-15	A:-10, B:-10

Alan

Example of multi-agent DMSO: Multi-agent RL

• \mathcal{M} is a subset of all Markov games

Multi-agent DMSO setting: DEC

- Joint decision space: $\Pi = \Pi_1 \times \cdots \times \Pi_K$
- $\mathcal{M} \ni M : \Pi \to \Delta([0,1]^K \times \mathcal{O})$ is a *joint model*
- Agent k's expected reward: $f_k^M(\pi) = \mathbb{E}^M[r_k|\pi]$
- Sum of agents' incentives to deviate:

$$h^{M}(\pi) \coloneqq \sum_{k} \max_{\pi'_{k} \in \Pi_{k}} f^{M}_{k}(\pi'_{k}, \pi_{-k}) - f^{M}_{k}(\pi)$$

Given \mathcal{M} , reference model $\overline{\mathcal{M}}$: $\Pi \to \Delta([0,1] \times \mathcal{O})$ and $\varepsilon > 0$, define:

$$\operatorname{dec}_{\varepsilon}^{\operatorname{MA}}(\mathcal{M},\overline{M}) \coloneqq \min_{p,q \in \Delta(\Pi)} \max_{M \in \mathcal{M}} \{ \mathbb{E}_{\pi \sim p}[h^{M}(\pi)] | \mathbb{E}_{\pi \sim q}[D^{2}_{\operatorname{Hel}}(M(\pi),\overline{M}(\pi))] \leq \varepsilon^{2} \}$$

Risk of decision Constraint set around reference model

• Difference from single-agent setting: $f^{M}(\pi_{M}) - f^{M}(\pi)$ replaced by $h^{M}(\pi)$

Multi-agent DMSO: Optimal Risk

Write
$$\operatorname{dec}_{\varepsilon}^{\operatorname{MA}}(\mathcal{M}) \coloneqq \sup_{\overline{M}} \operatorname{dec}_{\varepsilon}^{\operatorname{MA}}(\mathcal{M}, \overline{M})$$

Theorem [Foster-Foster-**G**-Rakhlin, '23]: For any \mathcal{M} , optimal risk for T rounds satisfies:

$$\Omega(1) \cdot \operatorname{dec}_{\mathcal{E}_*}^{\mathsf{MA}}(\mathcal{M}) \leq \mathbb{E}[\operatorname{Risk}_{\mathsf{Nash}}(T)] \leq O(1) \cdot \operatorname{dec}_{\mathcal{E}^*}^{\mathsf{MA}}(\mathcal{M})$$

where $\varepsilon^* = \widetilde{\Theta}(\sqrt{\log |\mathcal{M}|/T})$, and ε_* solves $\operatorname{dec}_{\mathcal{E}_*}^{\mathsf{MA}}(\mathcal{M}) \geq \widetilde{\Omega}(\varepsilon_*^2 \cdot KT)$

Note: weaker lower bound, roughly by a quadratic factor: e.g., for bandits:

- Lower bound for single-agent setting: need A/ϵ^2 rounds to find ϵ -optimal arm
- Above lower bound: need A/ε rounds to find ε -approx equilibrium (loose!)
- How large is this gap generically? Is it improvable?

Multi-agent DMSO: gaps between bounds

Theorem [Foster-Foster-**G**-Rakhlin, '23]: For any \mathcal{M} , optimal risk for T rounds satisfies:

$$\Omega(1) \cdot \operatorname{dec}_{\varepsilon_*}^{\operatorname{MA}}(\mathcal{M}) \leq \mathbb{E}[\operatorname{Risk}_{\operatorname{Nash}}(T)] \leq O(1) \cdot \operatorname{dec}_{\varepsilon^*}^{\operatorname{MA}}(\mathcal{M})$$

We show:

- Assuming (mild) regularity condition on dec_{ε}^{MA} , there is **only a polynomial gap** between upper & lower bound (often quadratic)
- No complexity measure depending only on pairwise Hellinger divergences and value functions characterizes sample complexity better than this polynomial gap
 - Extends to more general *f*-divergences

Overview of the talk

- Single-agent decision-making with structured observations (DMSO):
 - Review of the setting (covered in Dylan's talk)
 - Constrained DEC
 - Tight upper & lower bounds

• Multi-agent DMSO: fundamental differences from single-agent setting

- Introduction of the setting
- Upper & lower bounds
- Connection with partial monitoring
- Baseline upper bound by single-agent DEC (fixed point argument)

Multi-agent DMSO ⇔ DMSO with Hidden Rewards

Connection with hidden-reward setting (sometimes known as partial monitoring):

Takeaway: characterizing sample complexity of multiagent decision making is no easier (or harder) than doing so for hidden-reward decision making

Overview of the talk

- Single-agent decision-making with structured observations (DMSO):
 - Review of the setting (covered in Dylan's talk)
 - Constrained DEC
 - Tight upper & lower bounds

• Multi-agent DMSO: fundamental differences from single-agent setting

- Introduction of the setting
- Upper & lower bounds
- Connection with partial monitoring
- Baseline upper bound by single-agent DEC (fixed point argument)

DEC: from single-agent to multi-agent

• Can we get a good **baseline** to upper bound the multi-agent DEC?

For each agent k, define

$$\widetilde{\mathcal{M}}_{k} = \{\pi_{k} \mapsto M(\pi_{k}, \pi_{-k}) : \pi_{-k} \in \Pi_{-k}, M \in \mathcal{M}\}$$
where $\pi_{-k} = (\pi_{1}, \dots, \pi_{k-1}, \pi_{k+1}, \dots, \pi_{K})$

Theorem [Foster-Foster-**G**-Rakhlin, '23; informal]: For any model class \mathcal{M} and $\varepsilon > 0$, if decision spaces Π_k are convex:

$$\operatorname{dec}_{\varepsilon}^{\mathrm{MA}}(\mathcal{M}) \leq \sum_{k=1}^{K} \operatorname{Pdec}_{\sqrt{K} \cdot \varepsilon}^{\mathsf{c}}(\widetilde{\mathcal{M}}_{k})$$

• Proof idea: fixed point argument (Kakutani's fixed point theorem)

DEC: from single-agent to multi-agent

Theorem [Foster-Foster-**G**-Rakhlin, '23; informal]: For any model class \mathcal{M} and $\varepsilon > 0$, if decision spaces Π_k are convex:

$$\operatorname{dec}_{\varepsilon}^{\mathrm{MA}}(\mathcal{M}) \leq \sum_{k=1}^{K} \operatorname{Pdec}_{\sqrt{K} \cdot \varepsilon}^{\mathrm{c}}(\widetilde{\mathcal{M}}_{k})$$

Proof idea:

- For each agent k: If other agents commit to a fixed distribution in DEC defn., it induces a certain model class $\widetilde{\mathcal{M}}_k$ for agent k
- Agent k plays according to minimizer for single-agent DEC of $\widetilde{\mathcal{M}}_k$
- To get it to work for all k simultaneously: use Kakutani's fixed point theorem!

DEC: from single-agent to multi-agent for MGs

Theorem [Foster-Foster-**G**-Rakhlin, '23; informal]: For any model class \mathcal{M} and $\varepsilon > 0$, if decision spaces Π_k are convex:

$$\operatorname{dec}_{\varepsilon}^{\mathrm{MA}}(\mathcal{M}) \leq \sum_{k=1}^{K} \operatorname{Pdec}_{\sqrt{K} \cdot \varepsilon}^{\mathrm{c}}(\widetilde{\mathcal{M}}_{k})$$

Assumption of convexity:

- Holds: Normal-form bandit games, linear bandit games, concave bandit games
- Does not hold: Markov games

Theorem [Foster-Foster-**G**-Rakhlin, '23; informal]: For any model class \mathcal{M} of horizon-H Markov games and $\varepsilon > 0$:

$$\operatorname{dec}_{\varepsilon}^{\mathrm{MA}}(\mathcal{M}) \leq KH \cdot \varepsilon + \sum_{k=1}^{K} \operatorname{Pdec}_{\sqrt{KH} \cdot \varepsilon}^{\mathsf{c}}(\widetilde{\mathcal{M}}_{k})$$

Multi-agent DEC upper bounds

Using previous theorems, get near-tight bounds on DEC for:

- Normal-form multi-player bandit games: if agent k has A_k arms, $\operatorname{dec}_{\varepsilon}^{\operatorname{MA}}(\mathcal{M}^{\operatorname{nf}}) \leq \varepsilon \sqrt{K \cdot (A_1 + \dots + A_K)}$
- Linear bandit games: if action space of agent k is in \mathbb{R}^{d_k} , $\operatorname{dec}_{\varepsilon}^{\operatorname{MA}}(\mathcal{M}^{\operatorname{lin}}) \leq \varepsilon \sqrt{K \cdot (d_1 + \dots + d_K)}$
- Concave bandit games:

$$\operatorname{dec}_{\varepsilon}^{\operatorname{MA}}(\mathcal{M}^{\operatorname{ccv}}) \leq \varepsilon_{\sqrt{K}} \cdot (d_{1}^{4} + \dots + d_{K}^{4})$$

Above are tight up to poly factors – is it always the case that multi-agent DEC is **close to what "single-agent to multi-agent" reduction gives**?

Multi-agent DEC upper bounds

Theorem [Foster-Foster-**G**-Rakhlin, '23; informal]: For any model class \mathcal{M} and $\varepsilon > 0$, if decision spaces Π_k are convex:

$$\operatorname{dec}_{\varepsilon}^{\mathrm{MA}}(\mathcal{M}) \leq \sum_{k=1}^{K} \operatorname{Pdec}_{\sqrt{K} \cdot \varepsilon}^{c}(\widetilde{\mathcal{M}}_{k})$$

Proposition (informal): Above approach of "single-to-multiple" may be arbitrarily loose.

E.g.: if \mathcal{M} satisfies: all $M \in \mathcal{M}$ have a NE supported on some known "small

ubgame". M ₁		M_2				<i>M</i> ₃							
	0	0	0	0	0	0	0	0		0	0	0	0
M_i are 2-play 0-	0	.1	4	.5	0	.2	6	.5		0	.5	.7	6
sum games:	0	1	.5	.7	0	5	.7	.8		0	1	.5	.7
	0	.4	7	•	0	.9	.9	· •.		0	.5	3	•.

DEC variants: Landscape

M* fixed ("standard" DEC) [Foster-Kakade-Qian-Rakhlin, '22] [Foster-G-Han, '23] [Glasgow-Rakhlin, '23]

M* adversarial (not fixed) [Foster-Rakhlin-Sekhari-Sridharan, '22]

Model-free approach/ways to decrease **Est**_{Hel} in upper bound [Foster-**G**-Qian-Rakhlin-Sekhari, '22]

Reward-free setting [Chen-Mei-Bai, '22a]

Bounds on DEC for **POMDPs** [Chen-Mei-Bai, '22b] Instance-dependent guarantees [Foster-Wagenmaker, '23]

γ-regret setting [Glasgow-Rakhlin, '23]

Multi-agent decision making [Foster-Foster-**G**-Rakhlin, '23]

$$\equiv$$

Partial monitoring (i.e., hiddenreward) setting [Foster-Foster-G-Rakhlin, '23]

Precursor: information ratio [Russo & Van Roy, '14 & '18], many others

Open questions

- Avoiding Hellinger estimation error ($\mathbf{Est}_{\mathrm{Hel}}$) in upper bound
 - i.e., model-free approaches
- What other complexity measure could more tightly characterize learnability in multi-agent setting?
- Tight upper bounds on regret in terms of constrained DEC in multiagent setting

Conclusion & discussion

- **This talk**: near-tight bounds on optimal risk for interactive decision making, with extensions to multi-agent and hidden-reward settings
- Additional results we have:
 - Structural results on constrained DEC: relation to localization, role of reference model, etc.
 - General conditions under which the curse of multiple agents can be avoided
 - Other notions of equilibria (correlated, coarse correlated, etc)
- Our papers:
 - <u>https://arxiv.org/abs/2301.08215</u>
 - https://arxiv.org/pdf/2305.00684.pdf

Thank you for listening!