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Overview of the talk

e Single-agent decision-making with structured observations (DMSO):
* Review of the setting (covered in Dylan’s talk)
* Constrained DEC
* Tight upper & lower bounds

* Multi-agent DVISO: fundamental differences from single-agent setting
* Introduction of the setting
* Upper & lower bounds
* Connection with partial monitoring
* Baseline upper bound by single-agent DEC (fixed point argument)
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Motivation: learning and decision-making

(Un)supervised Learning: Decision-making: actively gather
prediction based on data from a information, i.e., data distribution
given distribution: depends on decisions:

Google

Translate

+

“How many samples do we need
to learn”:

 VC dimension, Rademacher
complexity, online variants

“How many rounds of interaction

do we need to learn?":
(e.g., Littlestone dimension), e This talk

etc.




Decision Making with Structured Observations (DMSQO) — PAC setting

[Foster-Kakade-Qian-Rakhlin, 21]
An agent interacts with environment over T time steps:

decision tt € 11

. >
ﬁ reward r® € [0,1] @

observation of € 0

<
«

At eachround t € |T]:

1. Agent selects decision 7° € I1, where I1 is agent’s decision space

2. Environment reveals r* € [0,1], o € O, where (1%, 0%) ~ M*(1%), where M*
is underlying model

In PAC setting — at termination: Contrast with regret setting
* Learner selects output decision 7 € [1 (perhaps at random) [ezeussee el




DMSO: Realizability and Risk

At each round t € [T]: decision 7t € [1
1. Agent selects decision ¢ € I1 o ; ]
€ (0,1
2. Environment reveals rt € [0,1], o° € O, where (rf,0%) ~ M*(t?) T « reward 7 € [0,1] @
At termination (PAC setting): observation ot € 0

* Learner selects output decision 7

Formally: a model is a mapping M : I1 - A(]0,1]X0)

[Realizability assumption: for a known model class M, we have M* € M }

In PAC setting: goal is to minimize risk of output decision 7:

Risk(T) = E [f" (my~) — f ()]
where:
" () = E"[r|rx], My = argmaXqenf ' (1)
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Decision-Estimation Coefficient: prior work

Is there a unified complexity measure that yields upper & lower bounds
for any given model class?

e [Foster-Kakade-Qian-Rakhlin, ‘21] introduce decision-estimation
coefficient (DEC), a complexity measure for arbitrary model classes M

* DEC gives upper & lower bounds on optimal risk achievable by any
algorithm for M

e Upper & lower bounds in terms of DEC of [FKQR, '21] have several gaps

* |In certain cases the resulting upper & lower bounds can be arbitrarily far apart

Can these gaps be removed, so that we get a tight characterization of
optimal risk attainable?



Concurrent work for

Constrained Decision-Estimation Coefficient (DEC) ., "5,

Given M, reference model M: Il —» A([0,1]x0O) and &€ > 0, define:

PdecS(M, M) = N 525%7) max{E,, ‘[fM(ﬂM) _ fM(n),]\‘IEnNQ[Dﬁel(M (), M(mr))] < 5,2}
| |

Risk of decision Constraint set around reference model

where:
* 17, is optimal decision for model M

2
. Déel(P, Q)= (\/P(dx) — \/Q(dx)) is Hellinger distance between distributions P, Q

ldea is to find:

* Optimal exploratory distribution q to constrain model class to only those
near M for polices T ~ ¢

* Optimal exploitation distribution p to choose low-risk decision for all
models in constrained model class



Constrained DEC: our results

PdecS (M) :== sup Pdecs (M, M)
i

-

w

\_

Theorem [Foster-G-Han, ‘23]: For any M, optimal risk for T rounds satisfies:

~

Q(1) - Pdect (M) < E[Risk(T)] < 0(1) - Pdec;- (M)

here &, = 0(,/1/T), ¢* = 8(y/log | M| /T) [FKQR, ‘21] observed that

this gap is unimprovable in

general — challenging/deep
open question

* Only gap between upper and lower bounds: ¢* = \/log | M| - €,

* We prove tighter bound for ¢* = @'(\/EstHel/T), where Esty;.; is upper
bound on online cumulative estimation error for M for Hellinger dist.

* Have Esty. = log | M'| by using exponential weights algorithm



Constrained DEC and Optimal Risk: Examples

/

Theorem [Foster-G-Han, ‘23]: Optimal risk for T rounds satisfies:
Q(1) - Pdect (M) < E[Risk(T)] < 0(1) - Pdec;- (M)

\where e, = 0(/1/T), e* = O(\/Estye/T)

Multi-armed bandits with 4 arms:

e Can show PdecS(M) =+A - ¢

* Via a uniform covering argument, can show Esty, < 4

* So above theorem gives: poly(4) - VT < E[Risk(T)] S poly(4) - VT

Tabular RL with § states, A actions, horizon H:
e Canshow ¢ VHSA < PdecS(M) S e-VH*SA
« Above theorem gives: VHSAT < E[Risk(T)] S VHAS3A2T




At eachround t € [T]:

ReS U |tS fO I reg rEt 1. Agent selects decision ¢ € II

2. Environment reveals r* € [0,1], o' € O, where (%, 0%) ~ M*(n")

* Regret: measures suboptimality of all 7rt:

Reg(T) = ) E[f" (my) - f* (x)]

Given M, reference model M: Il —» A([0,1]x0) and &€ > 0, define:

Rect (M, 1) = min, max{E-p[/" (m) = £ (D1 Er-p [Dfen (M), M) < &)

J | J
| |

Risk of decision Constraint set around reference model

* Difference with PAC setting: same p used for exploration and exploitation



Results for regret

Given M, reference model M: Il — A([0,1]x0O) and € > 0, define:

Rdecg (]\/[’ M) = pg}\i(lll'l) I&HE%\)}{EﬂNP [‘fM(T[M) — fM (7‘[)} ‘I‘En~p [Dliel(M(T[)' M(TC))] < 82'}

Risk of decision Constraint set around reference model

Write Rdecg (M) = sup Rdecg(M U {M}, M)
M

Note: unlike in PAC setting, M is added to model class in DEC definition above!
a N

Theorem [Foster-G-Han, ‘23]: Optimal regret for T rounds satisfies:
Q(1) - Rdect (M) < E[Reg(T)] < 0(1) - Rdec: (M)

\where e, = 0(/1/T), e* = O(Estye/T)




Constrained DEC: improvement over [FKQR, 21’}

* Recall definition of (regret) offset DEC (from Dylan’s talk):

Rdec)‘} (M, M) = prerzlli(%) &ne%{mn~p [fM(T[M) — fM ()] — YE:~p [Déel(M(ﬂ): M(TL’))]}
Bounds of [FKQR, ‘21] on E[Reg(T)] in terms of Rdecy (M, M) has gaps:
1. Restrict to “localized subclass” M c M for lower (but not upper) bound

* Roughly, M’ consists of models M with HfM — fM”OO < %

2. I\leed to restrict to proper reference models M € M for the lower bound but
M € co(M) for upper bound

Key point: both points lead to arbitrarily large gaps between upper & lower
bounds — our bounds in terms of constrained DEC close both gaps!

Introduction of constrained DEC is one of our contributions



CO n St ra I n ed [this paper] VS Offs et [FKQR, 21] D EC

Rdect (M, M) = min max{Ey—p[f" () = " (0]|Eqp (D (M (), M ()] < &2)

Rdec)? (M, M) — prer}\i(rllj) &nea]\)/%{mn~p [fM () — fM(T[)] — VIEn~p [DPZIeI(M (1), M(TL’))]}

» Can always upper bound Rdecg (M, M) by Rdecy (M, M)

* Converse does not hold in general (only in a weak sense) — unless you localize

e Similar considerations hold for PAC version

Summary of DEC: Constrained RdecS(M, M) PdecS (M, M)
Offset Rdecy (M, M) Pdecy (M, M)



Proof idea: upper bound

{ E[Risk(T)] < 0(1) - Pdec;: (M) for & = @(\/EstHel/T)

Basic skeleton: E2D algorithm of [FKQR, 21]
Main Challenge: constrained nature of DEC means we need to ensure that, for

outputting final policy, model estimate produced by estimation oracle is close

to M*
* Address this by using a confidence set at termination of algorithm

L E[Reg(T)] < 0(1) - Rdec.: (M) for &* = @(\/EstHel/T)

Similar to PAC bound on E[Risk(T)] above, but overcome Main Challenge by
using sequence of confidence sets over multiple epochs



Overview of the talk

* Multi-agent DMISO: fundamental differences from single-agent setting
* Introduction of the setting
* Upper & lower bounds
* Connection with partial monitoring
* Baseline upper bound by single-agent DEC (fixed point argument)



Multi-agent DMSO: Setting

We consider centralized, PAC
setting throughout.

K agents interact with environment over T time steps:
M*: 11y % -1, = A([0,1]%x
() is a joint model
At eachround t € |T]:

1. Each agent k selects decision 7. € II;, where I1, is agent’s decision space
2. Environment M ™ reveals 1 € [0,1], ot € O, to each agent k

At termination:

* Each agent chooses output decision 7;, € II; (perhaps at random)

Goal: minimize distance of 77: = (774, ..., T ) from being a (Nash) equilibrium

i A I - a This talk: we focus on
RlSkNash(T) = I z mom(Jjnt f';\g?ntf canAgaln Y approaching Nash equilibria;
T SRS A 3t have analogues for CCE, CE,
etc. in paper.
N bap Y,

’ - t
° decision 77, € Il

ﬂk reward 7 € [0,1], observation o' € O

«




reward r{ € [0,1], observation o’ € O

normal-form bandit games B o

Example of multi-agent DMSO: . decisionf € Tl @

Normal-form bandit games:

* [I,, = A(A},) for finite action set A,

. r,f is stochastic reward for k upon joint play
of i, ..., mk

* 0 ={0}
e M = “all mappings from II = I1; X :--X

1, to distributi [0,1]K” e
x to distributions on |0, Sient Convess
Many generalizations: < Silent A=, B:-1 A:-15, B0
* Linear bandit games (payoffs are multilinear) = e | Ao 6 A-10, B30
* Concave bandit games (each agent’s payoffs are

concave)



Example of multi-agent DMSO: Multi-agent RL

Setting for multi-agent RL:
(o~ )
finite-horizon episodic Markov game: coo @ ........ .@ coo
_ H H "y
M=(HS A X XAk, {Pnip=1,RpIp=1.d1) ™I
_— | | | -
horizon states actions transitions rewards Init. state P, (: |sn, ar)
. . —
Multi-agent RL in DMSO framework:
 II,, is the set of non-stationary policies T, = _
k y b k ap = (ayp -, Ax,h)
(T, 1) s Trym)s TiptS = A(A) rn = p o Tkn)
: t t ot ot t ot ot ' /
* Observation o* = (s, a7, 11, ...,55,Q5,T)
t . *
as above when - played in M decision 7} € 1
 Reward T'Ig = ZZI=1 rlg,h * . reward e € [0,1] @
* M is a subset of all Markov games . observation o € 0




Multi-agent DMSO setting: DEC

* Joint decision space: II = I[I; X ---XIIg

e M 3 M : 11 - A([0,1]¥X0) is a joint model

« Agent k’s expected reward: i)' () = EM[r,|r]
* Sum of agents’ incentives to deviate:

M () = nr,rlef%k f kM (T, i) = kM ()

Given M, reference model M: 11 - A([0,1]x0) and & > 0, define:

MA \ /1 -— & M 2 N < 2
decs (M, M) p,c?e]}\I(ln) Ar}le%\)/%{IEiNNP [h' ()] ‘}En~q [PHel(M(T[)' 1\'4(7-[))] = € },
Risk of decision Constraint set around

reference model

» Difference from single-agent setting: f (7r,,) — f™ () replaced by h (1)



Multi-agent DMSO: Optimal Risk
Write decM4 (M) :== sup dec}'* (M, M)
i

- . o N

Theorem [Foster-Foster-G-Rakhlin, 23]: For any M, optimal risk for T rounds
satisfies:

Q(1) - decMA(M) < E[Risky,sn(T)] < 0(1) - decy (M)
where ¢ = @(\/log | M|/T), and &, solves[decg AM) = Q(e? - KT)]

\_

Note: weaker lower bound, roughly by a quadratic factor: e.g., for bandits:

» Lower bound for single-agent setting: need A/ rounds to find e-optimal arm
* Above lower bound: need A/ rounds to find e-approx equilibrium (loose!)
 How large is this gap generically? Is it improvable?

/




Multi-agent DMSO: gaps between bounds

/Theorem [Foster-Foster-G-Rakhlin, ‘23]: For any M, optimal risk for T rounds
satisfies:

N Q(1) - decMA(M) < E[Risky,g, (T)] < 0(1) - dec¥? (M)

We show:

* Assuming (mild) regularity condition on decM#, there is only a
polynomial gap between upper & lower bound (often quadratic)

* No complexity measure depending only on pairwise Hellinger
divergences and value functions characterizes sample complexity better
than this polynomial gap

* Extends to more general f-divergences



Overview of the talk

* Multi-agent DMISO: fundamental differences from single-agent setting

* Connection with partial monitoring



Multi-agent DMSO < DMSO with Hidden Rewards

e Connection with hidden-reward setting (sometimes known as partial
monitoring):

decision ¢ € 1
lﬁ\' —remsiatcsorT— ®

observation ot € 0

<4

Takeaway: characterizing sample complexity of multi-
agent decision making is no easier (or harder) than
doing so for hidden-reward decision making




Overview of the talk

* Multi-agent DMISO: fundamental differences from single-agent setting

* Baseline upper bound by single-agent DEC (fixed point argument)



DEC: from single-agent to multi-agent

* Can we get a good baseline to upper bound the multi-agent DEC?

For each agent k, define
]\7[]( — {ﬂk > M(ﬂ:k,ﬂ_k) P T € H_k,M S M}
where m_;, = (7Tq, ..., Ty _1, Tg 41, -, T )

Kl'heorem [Foster-Foster-G-Rakhlin, “23; informal]: For any model class M and A
€ > 0, if decision spaces II;, are convex:

K
decMA(M) < 2 Pdec\c/f,g(]v[k)
k=1

\_

* Proof idea: fixed point argument (Kakutani’s fixed point theorem)




DEC: from single-agent to multi-agent

Kl'heorem [Foster-Foster-G-Rakhlin, “23; informal]: For any model class M and N
€ > 0, if decision spaces II;, are convex:

K
decMA(W) < 2 Pdec (M)

\_ . !

Proof idea:
* For each agent k: If other agents commit to a fixed distribution in

DEC defn., it induces a certain model class ﬁk for agent k

* Agent k plays according to minimizer for single-agent DEC of ﬁk
 To get it to work for all k simultaneously: use Kakutani’s fixed point

theorem!




DEC: from single-agent to multi-agent for MGs

/Theorem [Foster-Foster-G-Rakhlin, "23; informal]: For any model class M and € > 0, I
if decision spaces II;, are convex:

K
decMA(W) < 2 Pdecz . (MM})
\_ k=1

Assumption of convexity:
* Holds: Normal-form bandit games, linear bandit games, concave bandit games
* Does not hold: Markov games

ﬂl‘heorem [Foster-Foster-G-Rakhlin, 23; informal]: For any model class M of N
horizon-H Markov games and € > O:

K
decMA(M) S KH - e+ z Pdecf/m.g(ﬁ[k)
k k:1




Multi-agent DEC upper bounds Ldeeﬁ(MKZPdecf (M@J

Using previous theorems, get near-tight bounds on DEC for:

* Normal-form multi-player bandit games: if agent k has A, arms,
decMA(M™M) < eJK - (A + -+ + Ag)

* Linear bandit games: if action space of agent k is in R%,
decMA(M'™) < eJK - (dy + -+ + dy)

* Concave bandit games:

decMA(Mreev) <e\/K (di + -+ di)

Above are tight up to poly factors — is it always the case that

multi-agent DEC is close to what “single-agent to multi-agent”

reduction gives?
- /




Multi-agent DEC upper bounds

/Theorem [Foster-Foster-G-Rakhlin, "23; informal]: For any model class M and € > 0, I
if decision spaces II;, are convex:

K
decMA(W) < 2 Pdecz . (MM})
\_ k=1

Proposition (informal): Above approach of “single-to-multiple” may be
arbitrarily loose.

—

E.g.: if M satisfies: all M € M have a NE supported on some known “small

subgame”. M, M, M;
0O 0 0 O 0O 0 0 O 0O 0 0 O
M. are 2-play 0- 0O .1 -4 5 0 .2 -6 5 US| 7| =L ‘e
sum games: 0 1 5 .7 0 5 7 .8 0 1 5 .7
0o 4 -7 ° o 9 .9 - 0 5 -3 °



DEC variants: Landscape

M™ fixed (”standard” DEC)
[Foster-Kakade-Qian-Rakhlin, 22]
[Foster-G-Han, ‘23]
[Glasgow-Rakhlin, 23]

M™ adversarial (not fixed) Model-free approach/ways to decrease
[Foster-Rakhlin-Sekhari- EStHel in upper bound
Sridharan, ‘22] [Foster-G-Qian-Rakhlin-Sekhari, ‘22]

Instance-dependent
guarantees
[Foster-Wagenmaker, ‘23]

Bounds on DEC for POMDPs
[Chen-Mei-Bai, '22b]

Multi-agent decision making
[Foster-Foster-G-Rakhlin, ‘23]

Precursor: information ratio
[Russo & Van Roy, ‘14 & ‘18],
many others

Reward-free setting
[Chen-Mei-Bai, '22a]

Y-regret setting
[Glasgow-Rakhlin, 23]

Partial monitoring (i.e., hidden-
reward) setting
[Foster-Foster-G-Rakhlin, ‘23]



Open guestions

* Avoiding Hellinger estimation error (Esty,;) in upper bound
* i.e., model-free approaches

* What other complexity measure could more tightly characterize
learnability in multi-agent setting?

* Tight upper bounds on regret in terms of constrained DEC in multi-
agent setting



Conclusion & discussion

* This talk: near-tight bounds on optimal risk for interactive decision
making, with extensions to multi-agent and hidden-reward settings

e Additional results we have:

e Structural results on constrained DEC: relation to localization, role of
reference model, etc.

* General conditions under which the curse of multiple agents can be avoided
e Other notions of equilibria (correlated, coarse correlated, etc)

* Our papers:
* https://arxiv.org/abs/2301.08215

* https://arxiv.org/pdf/2305.00684.pdf Thank yOUfOr
listening!



https://arxiv.org/abs/2301.08215
https://arxiv.org/pdf/2305.00684.pdf

