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Motivation: learning and decision-making

(Un)supervised Learning: 
prediction based on data from a 
given distribution:

Decision-making: actively gather 
information, i.e., data distribution 
depends on decisions:

“How many samples do we need 
to learn”:
• VC dimension, Rademacher 

complexity, online variants 
(e.g., Littlestone dimension), 
etc.

“How many rounds of interaction 
do we need to learn?":
• This talk



Decision Making with Structured Observations (DMSO) – PAC setting

An agent interacts with environment over 𝑇 time steps:

decision 𝜋! ∈ Π

reward 𝑟! ∈ [0,1] 

observation 𝑜! ∈ 𝒪 

At each round 𝒕 ∈ [𝑻]:
1. Agent selects decision 𝜋, ∈ Π, where Π is agent’s decision space
2. Environment reveals 𝑟, ∈ [0,1], 𝑜, ∈ 𝒪, where 𝑟, , 𝑜, ∼ 𝑀⋆(𝜋,), where 𝑀⋆ 

is underlying model

In PAC setting – at termination:
• Learner selects output decision 2𝜋 ∈ Π (perhaps at random)

[Foster-Kakade-Qian-Rakhlin, ‘21]

Contrast with regret setting 
(discussed later)



DMSO: Realizability and Risk

Formally: a model is a mapping 𝑀 ∶ Π → Δ( 0,1 ×𝒪)

At each round 𝒕 ∈ [𝑻]:
1. Agent selects decision 𝜋! ∈ Π
2. Environment reveals 𝑟! ∈ [0,1], 𝑜! ∈ 𝒪, where 𝑟! , 𝑜! ∼ 𝑀⋆(𝜋!)
At termination (PAC setting):
• Learner selects output decision 4𝜋

Realizability assumption: for a known model class ℳ, we have 𝑀⋆ ∈ ℳ

In PAC setting: goal is to minimize risk of output decision /𝜋:
𝐑𝐢𝐬𝐤 𝑇 ≔	𝔼	[𝑓#

⋆ 𝜋#⋆ − 𝑓#⋆ /𝜋 ]
where:

𝑓# 𝜋 = 𝔼# 𝑟 𝜋 , 	 𝜋# ≔ argmax$∈&𝑓#(𝜋)

decision 𝜋! ∈ Π

reward 𝑟! ∈ [0,1] 

observation 𝑜! ∈ 𝒪 



Examples of DMSO

• Stochastic multi-armed bandits
• Structured bandit generalizations
• Linear bandits
• Concave bandits

• Reinforcement learning
• Tabular
• Function approximation

𝑠# 𝑠#$%
𝑎#

𝑃#(⋅ |𝑠# , 𝑎#)

⋯⋯



Decision-Estimation Coefficient: prior work

Is there a unified complexity measure that yields upper & lower bounds 
for any given model class? 

• [Foster-Kakade-Qian-Rakhlin, ‘21] introduce decision-estimation 
coefficient (DEC), a complexity measure for arbitrary model classes ℳ
• DEC gives upper & lower bounds on optimal risk achievable by any 

algorithm for ℳ
• Upper & lower bounds in terms of DEC of [FKQR, ’21] have several gaps
• In certain cases the resulting upper & lower bounds can be arbitrarily far apart

Can these gaps be removed, so that we get a tight characterization of 
optimal risk attainable? 



Constrained Decision-Estimation Coefficient (DEC)

Given ℳ, reference model D𝑀:Π → Δ( 0,1 ×𝒪) and 𝜀 > 0, define:

Pdec:; ℳ, 8𝑀 ≔ min
<,=∈>(?)

max
@∈ℳ

𝔼B∼<[𝑓@ 𝜋@ − 𝑓@(𝜋)] 𝔼B∼=[𝐷CDEF 𝑀 𝜋 , !𝑀 𝜋 ) ≤ 𝜀F

where:
• 𝜋@ is optimal decision for model 𝑀

• 𝐷CDEF 𝑃, 𝑄 = ∫ 𝑃 𝑑𝑥 − 𝑄 𝑑𝑥
F

 is Hellinger distance between distributions 𝑃, 𝑄

Risk of decision Constraint set around reference model

Idea is to find:
• Optimal exploratory distribution 𝒒 to constrain model class to only those 

near "𝑀 for polices 𝜋 ∼ 𝑞
• Optimal exploitation distribution 𝒑 to choose low-risk decision for all 

models in constrained model class

Concurrent work for 
PAC DEC:

[Chen-Mei-Bai, ‘22]



Constrained DEC: our results 

• Only gap between upper and lower bounds: 𝜀∗ ≍ log |ℳ| ⋅ 𝜀∗
• We prove tighter bound for 𝜀∗ = MΘ( 𝐄𝐬𝐭()*/𝑇), where 𝐄𝐬𝐭()* is upper 

bound on online cumulative estimation error for ℳ for Hellinger dist.
• Have 𝐄𝐬𝐭()* ≲ log |ℳ| by using exponential weights algorithm

Theorem [Foster-G-Han, ‘23]: For any ℳ, optimal risk for 𝑇 rounds satisfies:
Ω 1 ⋅ Pdec!∗

" (ℳ) ≤ 𝔼 𝐑𝐢𝐬𝐤 𝑇 ≤ 𝑂 1 ⋅ Pdec!∗
" (ℳ)

where 𝜀∗ = <Θ( 1/𝑇), 𝜀∗ = <Θ( log	|ℳ|/𝑇) 

Pdec!" ℳ ≔	sup
$%
Pdec!" ℳ, "𝑀

[FKQR, ‘21] observed that 
this gap is unimprovable in 
general – challenging/deep 

open question



Constrained DEC and Optimal Risk: Examples

Theorem [Foster-G-Han, ‘23]: Optimal risk for 𝑇 rounds satisfies:
Ω 1 ⋅ Pdec!∗

" (ℳ) ≤ 𝔼 𝐑𝐢𝐬𝐤 𝑇 ≤ 𝑂 1 ⋅ Pdec!∗
" (ℳ)

where 𝜀∗ = <Θ( 1/𝑇), 𝜀∗ = <Θ( 𝐄𝐬𝐭()*/𝑇) 

Multi-armed bandits with 𝑨 arms:
• Can show Pdec:;(ℳ) ≍ 𝐴 ⋅ 𝜀
• Via a uniform covering argument, can show 𝐄𝐬𝐭CDE ≲ 𝐴
• So above theorem gives: poly 𝐴 ⋅ 𝑇 ≲ 𝔼 𝐑𝐢𝐬𝐤 𝑇 ≲ poly 𝐴 ⋅ 𝑇

Tabular RL with 𝑺 states, 𝑨 actions, horizon 𝑯:
• Can show 𝜀 ⋅ 𝐻𝑆𝐴 ≲ Pdec:;(ℳ) ≲ 𝜀 ⋅ 𝐻F𝑆𝐴
• Above theorem gives: 𝐻𝑆𝐴𝑇 ≲ 𝔼 𝐑𝐢𝐬𝐤 𝑇 ≲ 𝐻G𝑆H𝐴F𝑇



Results for regret

• Regret: measures suboptimality of all 𝜋+:

𝐑𝐞𝐠 𝑇 ≔U
+,-

.

𝔼	[𝑓#
⋆ 𝜋#⋆ − 𝑓#⋆ 𝜋+ ] 

At each round 𝒕 ∈ [𝑻]:
1. Agent selects decision 𝜋! ∈ Π
2. Environment reveals 𝑟! ∈ [0,1], 𝑜! ∈ 𝒪, where 𝑟! , 𝑜! ∼ 𝑀⋆(𝜋!)

Given ℳ, reference model D𝑀:Π → Δ( 0,1 ×𝒪) and 𝜀 > 0, define:

Rdec:; ℳ, 8𝑀 ≔ min
<∈>(?)

max
@∈ℳ

𝔼B∼<[𝑓@ 𝜋@ − 𝑓@(𝜋)] 𝔼B∼<[𝐷CDEF 𝑀 𝜋 , !𝑀 𝜋 ) ≤ 𝜀F

Risk of decision Constraint set around reference model

• Difference with PAC setting: same 𝑝 used for exploration and exploitation



Results for regret
Given ℳ, reference model D𝑀:Π → Δ( 0,1 ×𝒪) and 𝜀 > 0, define:

Rdec:; ℳ, !𝑀 ≔ min
<∈>(?)

max
@∈ℳ

𝔼B∼<[𝑓@ 𝜋@ − 𝑓@(𝜋)] 𝔼B∼<[𝐷CDE
F 𝑀 𝜋 , !𝑀 𝜋 ) ≤ 𝜀F

Risk of decision Constraint set around reference model

Write Rdec!" ℳ ≔	sup
/#
Rdec!" ℳ∪ { "𝑀}, "𝑀

Theorem [Foster-G-Han, ‘23]: Optimal regret for 𝑇 rounds satisfies:
Ω 1 ⋅ Rdec!∗

" (ℳ) ≲ 𝔼 𝐑𝐞𝐠 𝑇 ≤ 𝑂 1 ⋅ Rdec!∗
" (ℳ)

where 𝜀∗ = <Θ( 1/𝑇), 𝜀∗ = <Θ( 𝐄𝐬𝐭()*/𝑇) 

Note: unlike in PAC setting, "𝑀	is added to model class in DEC definition above!



Constrained DEC: improvement over [FKQR, 21’]
• Recall definition of (regret) offset DEC (from Dylan’s talk):

RdecIJ ℳ, 8𝑀 ≔ min
<∈>(?)

max
@∈ℳ

{𝔼B∼< 𝑓@ 𝜋@ − 𝑓@ 𝜋 − 𝛾𝔼B∼<[𝐷CDEF 𝑀 𝜋 , 8𝑀 𝜋 ) }

Bounds of [FKQR, ‘21] on 𝔼 𝐑𝐞𝐠 𝑇  in terms of Rdec01 ℳ, D𝑀  has gaps:
1. Restrict to “localized subclass” ℳ′ ⊂ ℳ for lower (but not upper) bound
• Roughly, ℳ′ consists of models 𝑀 with 𝑓# − 𝑓 /#

2
≤ 0

.
2. Need to restrict to proper reference models D𝑀 ∈ ℳ for the lower bound but 
D𝑀 ∈ co(ℳ) for upper bound 

Key point: both points lead to arbitrarily large gaps between upper & lower 
bounds – our bounds in terms of constrained DEC close both gaps!

Introduction of constrained DEC is one of our contributions



Constrained [this paper] vs Offset [FKQR, 21’] DEC

• Can always upper bound Rdec34 ℳ, D𝑀  by Rdec01 ℳ, D𝑀
• Converse does not hold in general (only in a weak sense) – unless you localize
• Similar considerations hold for PAC version

Rdec:; ℳ, 8𝑀 ≔ min
<∈>(?)

max
@∈ℳ

𝔼B∼<[𝑓@ 𝜋@ − 𝑓@(𝜋)] 𝔼B∼<[𝐷CDEF 𝑀 𝜋 , 8𝑀 𝜋 ) ≤ 𝜀F

RdecIJ ℳ, 8𝑀 ≔ min
<∈>(?)

max
@∈ℳ

{𝔼B∼< 𝑓@ 𝜋@ − 𝑓@ 𝜋 − 𝛾𝔼B∼<[𝐷CDEF 𝑀 𝜋 , 8𝑀 𝜋 ) }

Regret PAC
Constrained Rdec!" ℳ, "𝑀 Pdec!" ℳ, "𝑀
Offset Rdec&' ℳ, "𝑀 Pdec&' ℳ, "𝑀

Summary of DEC:



Proof idea: upper bound

𝔼 𝐑𝐢𝐬𝐤 𝑇 ≤ 𝑂 1 ⋅ Pdec!∗
" ℳ    for    𝜀∗ = <Θ( 𝐄𝐬𝐭()*/𝑇) 

𝔼 𝐑𝐞𝐠 𝑇 ≤ 𝑂 1 ⋅ Rdec!∗
" ℳ     for     𝜀∗ = <Θ( 𝐄𝐬𝐭()*/𝑇) 

Basic skeleton: E2D algorithm of [FKQR, 21]
Main Challenge: constrained nature of DEC means we need to ensure that, for 
outputting final policy, model estimate produced by estimation oracle is close 
to 𝑀⋆

• Address this by using a confidence set at termination of algorithm

Similar to PAC bound on 𝔼 𝐑𝐢𝐬𝐤 𝑇  above, but overcome Main Challenge by 
using sequence of confidence sets over multiple epochs
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Multi-agent DMSO: Setting
𝑲 agents interact with environment over 𝑇 time steps:

decision 𝜋&! ∈ Π'
reward 𝑟&! ∈ [0,1], observation 𝑜! ∈ 𝒪 

At each round 𝒕 ∈ [𝑻]:
1. Each agent 𝑘 selects decision 𝜋K, ∈ ΠK, where ΠK is agent’s decision space
2. Environment 𝑀⋆ reveals 𝑟K, ∈ [0,1], 𝑜, ∈ 𝒪, to each agent 𝑘
At termination:
• Each agent chooses output decision 2𝜋K ∈ ΠK (perhaps at random)
Goal: minimize distance of 2𝜋:= (2𝜋L, … , 2𝜋M) from being a (Nash) equilibrium

𝐑𝐢𝐬𝐤𝐍𝐚𝐬𝐡 𝑇 ≔	𝔼 L
K

	

⋯
⋯ ⋯

⋯𝑘

Amount agent 𝑘 can gain by 
deviating from 4𝜋&

This talk: we focus on 
approaching Nash equilibria; 
have analogues for CCE, CE, 

etc. in paper.

We consider centralized, PAC 
setting throughout.

𝑀⋆: Π%×⋯×Π& → Δ( 0,1 (×
𝒪) is a joint model



Example of multi-agent DMSO: 
normal-form bandit games

decision 𝜋!" ∈ Π#
reward 𝑟!" ∈ [0,1], observation 𝑜" ∈ 𝒪 

𝑘

Normal-form bandit games:
• Π) = Δ(𝐴)) for finite action set 𝐴)
• 𝑟)*  is stochastic reward for 𝑘 upon joint play 

of 𝜋+* , … , 𝜋,*
• 𝒪 = {∅}
• ℳ = “all mappings from Π = Π-×⋯×
Π5  to distributions on 0,1 5”

Many generalizations:
• Linear bandit games (payoffs are multilinear)
• Concave bandit games (each agent’s payoffs are 

concave)



Example of multi-agent DMSO: Multi-agent RL

decision 𝜋&! ∈ Π

reward 𝑟&! ∈ [0,1] 

observation 𝑜! ∈ 𝒪 

Multi-agent RL in DMSO framework:
• Π6  is the set of non-stationary policies 𝜋6 =
(𝜋6,-, … , 𝜋6,8),  𝜋6,9: 𝒮 → Δ(𝒜6) 

• Observation 𝑜+ = (𝑠-+ , 𝒂-+ , 𝒓-+ , … , 𝑠8+ , 𝒂8+ , 𝒓8+ ) 
as above when 𝜋+  played in 𝑀⋆

• Reward 𝑟6+ = ∑9,-8 𝑟6,9+

• ℳ is a subset of all Markov games

Setting for multi-agent RL:
finite-horizon episodic Markov game:

𝑀 = (𝐻, 𝒮,𝒜-×⋯×𝒜5 , 𝑃9 9,-
8 , 𝑅9 9,-

8 , 𝑑-)
𝑠# 𝑠#$%

𝒂#

𝑃#(⋅ |𝑠# , 𝒂#)

⋯⋯

𝒂- = (𝑎+,-, … , 𝑎,,-)
𝒓- = (𝑟+,-, … , 𝑟,,-)

𝑘

transitions rewardsactionsstateshorizon Init. state



Multi-agent DMSO setting: DEC
• 𝐉𝐨𝐢𝐧𝐭	𝐝𝐞𝐜𝐢𝐬𝐢𝐨𝐧	𝐬𝐩𝐚𝐜𝐞: 	Π = Π-×⋯×Π5
•ℳ ∋ 𝑀 ∶ Π → Δ( 0,1 5×𝒪) is a joint model
• Agent 𝑘’s expected reward: 𝑓6# 𝜋 = 	𝔼#[𝑟6|𝜋]
• Sum of agents’ incentives to deviate:

ℎ# 𝜋 ≔U
6

max
$"
# ∈&"

𝑓6# 𝜋6: , 𝜋;6 − 𝑓6# 𝜋

Given ℳ, reference model D𝑀:Π → Δ( 0,1 ×𝒪) and 𝜀 > 0, define:

dec:YZ ℳ, 8𝑀 ≔ min
<,=∈>(?)

max
@∈ℳ

𝔼B∼<[ℎ@(𝜋)] 𝔼B∼=[𝐷CDEF 𝑀 𝜋 , 8𝑀 𝜋 ) ≤ 𝜀F

Risk of decision Constraint set around 
reference model

• Difference from single-agent setting: 𝑓# 𝜋# − 𝑓# 𝜋  replaced by ℎ# 𝜋



Multi-agent DMSO: Optimal Risk

Theorem [Foster-Foster-G-Rakhlin, ‘23]: For any ℳ, optimal risk for 𝑇 rounds 
satisfies:

Ω 1 ⋅ dec3∗
<=(ℳ) ≤ 𝔼 𝐑𝐢𝐬𝐤𝐍𝐚𝐬𝐡 𝑇 ≤ O 1 ⋅ dec3∗

<=(ℳ)

where 𝜀∗ = <Θ( log |ℳ|/𝑇), and  𝜀∗ solves dec:∗
YZ(ℳ) ≥ RΩ(𝜀∗F ⋅ 𝐾𝑇)

Note: weaker lower bound, roughly by a quadratic factor: e.g., for bandits:
• Lower bound for single-agent setting: need 𝑨/𝜺𝟐 rounds to find 𝜀-optimal arm
• Above lower bound: need 𝑨/𝜺 rounds to find 𝜀-approx equilibrium (loose!)
• How large is this gap generically? Is it improvable?

Write dec!01 ℳ ≔	sup
$%
dec!01 ℳ, "𝑀



Multi-agent DMSO: gaps between bounds

We show:
• Assuming (mild) regularity condition on dec3<=, there is only a 

polynomial gap between upper & lower bound (often quadratic)
• No complexity measure depending only on pairwise Hellinger 

divergences and value functions characterizes sample complexity better 
than this polynomial gap
• Extends to more general f-divergences

Theorem [Foster-Foster-G-Rakhlin, ‘23]: For any ℳ, optimal risk for 𝑇 rounds 
satisfies:

Ω 1 ⋅ dec3∗
<=(ℳ) ≤ 𝔼 𝐑𝐢𝐬𝐤𝐍𝐚𝐬𝐡 𝑇 ≤ O 1 ⋅ dec3∗

<=(ℳ)
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Multi-agent DMSO ⟺ DMSO with Hidden Rewards

• Connection with hidden-reward setting (sometimes known as partial 
monitoring):

decision 𝜋! ∈ Π

reward 𝑟! ∈ [0,1] 

observation 𝑜! ∈ 𝒪 

Theorem [Informal; Foster-Foster-G-Rakhlin, ‘23]: The multi-agent and 
hidden-reward settings are roughly equivalent in the following sense:
• Given any model class ℳ for one setting, it can be transformed into a 

model class ℳ′ for the other setting so that minimax sample complexity 
for 𝓜 and 𝓜′ are roughly equal

• DEC for 𝓜 and 𝓜′ are nearly equal

Takeaway: characterizing sample complexity of multi-
agent decision making is no easier (or harder) than 

doing so for hidden-reward decision making
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DEC: from single-agent to multi-agent
• Can we get a good baseline to upper bound the multi-agent DEC?

For	each	agent	𝑘,	define
Mℳ6 = {𝜋6 ↦ 𝑀 𝜋6 , 𝜋;6 	 ∶ 	 𝜋;6 ∈ Π;6 , 𝑀 ∈ ℳ}

where 𝜋;6 = (𝜋-, … , 𝜋6;-, 𝜋6>-, … , 𝜋5)

Theorem [Foster-Foster-G-Rakhlin, ’23; informal]: For any model class ℳ and 
𝜀 > 0, if decision spaces Π) are convex:

dec:YZ ℳ ≤L
K\L

M

Pdec M⋅:
; Rℳ)

• Proof idea: fixed point argument (Kakutani’s fixed point theorem)



DEC: from single-agent to multi-agent

Theorem [Foster-Foster-G-Rakhlin, ’23; informal]: For any model class ℳ and 
𝜀 > 0, if decision spaces Π) are convex:

dec:YZ ℳ ≤L
K\L

M

Pdec M⋅:
; Rℳ)

Proof idea:
• For each agent 𝑘: If other agents commit to a fixed distribution in 

DEC defn., it induces a certain model class !ℳ6  for agent 𝑘
• Agent 𝑘 plays according to minimizer for single-agent DEC of !ℳ6  
• To get it to work for all 𝑘 simultaneously: use Kakutani’s fixed point 

theorem!



DEC: from single-agent to multi-agent for MGs
Theorem [Foster-Foster-G-Rakhlin, ’23; informal]: For any model class ℳ and 𝜀 > 0, 
if decision spaces ΠK are convex:

dec:YZ ℳ ≤L
K\L

M

Pdec M⋅:
; RℳK

Theorem [Foster-Foster-G-Rakhlin, ’23; informal]: For any model class ℳ of 
horizon-𝐻 Markov games and 𝜀 > 0:

dec:YZ ℳ ≲ 𝐾𝐻 ⋅ 𝜀 +L
K\L

M

Pdec M]⋅:
; Rℳ)

Assumption of convexity:
• Holds: Normal-form bandit games, linear bandit games, concave bandit games
• Does not hold: Markov games



Multi-agent DEC upper bounds
Using previous theorems, get near-tight bounds on DEC for:
• Normal-form multi-player bandit games: if agent 𝑘 has 𝐴6  arms,

dec3<= ℳ?@ ≤ 𝜀 𝐾 ⋅ (𝐴- +⋯+ 𝐴5)
• Linear bandit games: if action space of agent 𝑘 is in ℝA",

dec3<= ℳ*B? ≤ 𝜀 𝐾 ⋅ (𝑑- +⋯+ 𝑑5)
• Concave bandit games: 

dec3<= ℳ44C ≲ 𝜀 𝐾 ⋅ (𝑑-D +⋯+ 𝑑5D )

Above are tight up to poly factors – is it always the case that 
multi-agent DEC is close to what “single-agent to multi-agent” 

reduction gives?

dec)*+ ℳ ≤b
&,%

(

Pdec (⋅)
. dℳ&



Multi-agent DEC upper bounds

Proposition (informal): Above approach of “single-to-multiple” may be 
arbitrarily loose.

E.g.: if ℳ satisfies: all 𝑀 ∈ ℳ have a NE supported on some known “small 
subgame”. 

0 0 0 0

0 .1 -.4 .5

0 -.1 .5 .7

0 .4 -.7 ⋱

0 0 0 0

0 .2 -.6 .5

0 -.5 .7 .8

0 .9 .9 ⋱

0 0 0 0

0 .5 .7 -.6

0 -.1 .5 .7

0 .5 -.3 ⋱

⋯
𝑀% 𝑀/ 𝑀0

Theorem [Foster-Foster-G-Rakhlin, ’23; informal]: For any model class ℳ and 𝜀 > 0, 
if decision spaces ΠK are convex:

dec:YZ ℳ ≤L
K\L

M

Pdec M⋅:
; RℳK

𝑀1  are 2-play 0-
sum games:



DEC variants: Landscape

𝑀⋆ adversarial (not fixed)
[Foster-Rakhlin-Sekhari-

Sridharan, ‘22]

Model-free approach/ways to decrease 
𝐄𝐬𝐭234 in upper bound 

[Foster-G-Qian-Rakhlin-Sekhari, ‘22]

Multi-agent decision making
[Foster-Foster-G-Rakhlin, ‘23]

Partial monitoring (i.e., hidden-
reward) setting

[Foster-Foster-G-Rakhlin, ‘23]≡

𝑀⋆ fixed (”standard” DEC)
[Foster-Kakade-Qian-Rakhlin, ‘22]

[Foster-G-Han, ‘23]
[Glasgow-Rakhlin, ‘23]

Reward-free setting
[Chen-Mei-Bai, ’22a]

Bounds on DEC for POMDPs 
[Chen-Mei-Bai, ’22b]

Instance-dependent 
guarantees

[Foster-Wagenmaker, ‘23]

𝜸-regret setting
[Glasgow-Rakhlin, ‘23]

Precursor: information ratio
[Russo & Van Roy, ’14 & ‘18],

many others



Open questions

• Avoiding Hellinger estimation error (𝐄𝐬𝐭()*) in upper bound
• i.e., model-free approaches

• What other complexity measure could more tightly characterize 
learnability in multi-agent setting?
• Tight upper bounds on regret in terms of constrained DEC in multi-

agent setting



Conclusion & discussion

• This talk: near-tight bounds on optimal risk for interactive decision 
making, with extensions to multi-agent and hidden-reward settings
• Additional results we have:
• Structural results on constrained DEC: relation to localization, role of 

reference model, etc.
• General conditions under which the curse of multiple agents can be avoided
• Other notions of equilibria (correlated, coarse correlated, etc)

• Our papers:
• https://arxiv.org/abs/2301.08215
• https://arxiv.org/pdf/2305.00684.pdf Thank you for 

listening!

https://arxiv.org/abs/2301.08215
https://arxiv.org/pdf/2305.00684.pdf

